首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 DNA polymorphism of the S-locus receptor kinase gene (SRK) participating in self-incompatibility in Brassica was analyzed by PCR-RFLP and nucleotide sequencing. In the screening of primers for specific amplification of polymorphic DNA fragments of SRK, the best combination was that of a forward primer (PK1) having the nucleotide sequence of the second exon of S6 SRK and a reverse primer (PK4) having the complementary nucleotide sequence of the fifth exon of S6 SRK. PCR using this primer pair amplified DNA fragments of 0.9–1.0 kb from 36 S haplotypes out of 42 tested. These DNA fragments showed high polymorphism in polyacrylamide-gel electrophoresis after digestion with restriction endonuclease(s): 25 types were found in a double digestion with MboI and AfaI. Nucleotide sequencing of the DNA fragments amplified from five S haplotypes showed that the third, fourth, and fifth exons of SRK are highly conserved, and that there are high variations of the second and third introns of SRK, which produced polymorphism of the band pattern in PCR-RFLPs. Another forward primer (PK5) having the nucleotide sequence of the second exon, which is derived from S2 SRK, amplified DNA fragments of almost the same region of SRK from 27 S haplotypes in combination with PK4. Although SRK alleles of the class-II S haplotypes were not amplified, all of the class-I S-haplotypes were amplified with a primer mixture of PK1, PK4 and PK5. The DNA fragments of both SRK alleles in S heterozygotes, or a 1 : 1 mixture of the genomic DNA of different S homozygotes, were amplified without exception, suggesting the usefulness of these primers for the identification of S heterozygotes. The DNA fragment sizes obtained by digestion with restriction endonucleases served as markers for the identification of S haplotypes. Received: 15 December 1996 / Accepted: 14 February 1997  相似文献   

2.
Background and Aims The S-locus receptor kinase (SRK), which is expressed in stigma epidermal cells, is responsible for the recognition and inhibition of ‘self’ pollen in the self-incompatibility (SI) response of the Brassicaceae. The allele-specific interaction of SRK with its cognate pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein, is thought to trigger a signalling cascade within the stigma epidermal cell that leads to the arrest of ‘self’ pollen at the stigma surface. In addition to the full-length signalling SRK receptor, stigma epidermal cells express two other SRK protein species that lack the kinase domain and whose role in the SI response is not understood: a soluble version of the SRK ectodomain designated eSRK and a membrane-tethered form designated tSRK. The goal of this study was to describe the sub-cellular distribution of the various SRK protein species in stigma epidermal cells as a prelude to visualizing receptor dynamics in response to SCR binding.Methods The Arabidopsis lyrata SRKb variant was tagged with the Citrine variant of yellow fluorescent protein (cYFP) and expressed in A. thaliana plants of the C24 accession, which had been shown to exhibit a robust SI response upon transformation with the SRKb–SCRb gene pair. The transgenes used in this study were designed for differential production and visualization of the three SRK protein species in stigma epidermal cells. Transgenic stigmas were analysed by pollination assays and confocal microscopy.Key Results and Conclusions Pollination assays demonstrated that the cYFP-tagged SRK proteins are functional and that the eSRK is not required for SI. Confocal microscopic analysis of cYFP-tagged SRK proteins in live stigma epidermal cells revealed the differential sub-cellular localization of the three SRK protein species but showed no evidence for redistribution of these proteins subsequent to incompatible pollination.  相似文献   

3.
Brassica self-incompatibility, a highly discriminating outbreeding mechanism, has become a paradigm for the study of plant cell-cell communications. When self-pollen lands on a stigma, the male ligand S cysteine-rich (SCR), which is present in the pollen coat, is transmitted to the female receptor, S-locus receptor kinase (SRK). SRK is a membrane-spanning serine/threonine receptor kinase present in the stigmatic papillar cell membrane. Haplotype-specific binding of SCR to SRK brings about pollen rejection. The extracellular receptor domain of SRK (eSRK) is responsible for binding SCR. Based on sequence homology, eSRK can be divided into three subdomains: B lectin-like, hypervariable, and PAN. Biochemical analysis of these subdomains showed that the hypervariable subdomain is responsible for most of the SCR binding capacity of eSRK, whereas the B lectin-like and PAN domains have little, if any, affinity for SCR. Fine mapping of the SCR binding region of SRK using a peptide array revealed a region of the hypervariable subdomain that plays a key role in binding the SCR molecule. We show that residues within the hypervariable subdomain define SRK binding and are likely to be involved in defining haplotype specificity.  相似文献   

4.
5.
6.
An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase.  相似文献   

7.
To elucidate the evolutionary history of the genus Capsella, we included the hitherto poorly known species C. orientalis and C. thracica into our studies together with C. grandiflora, C. rubella and C. bursa‐pastoris. We sequenced the ITS and four loci of noncoding cpDNA regions (trnL – F, rps16, trnH –psbA and trnQ –rps16). Sequence data were evaluated with parsimony and Bayesian analyses. Divergence time estimates were carried out with the software package BEAST. We also performed isozyme, cytological, morphological and biogeographic studies. Capsella orientalis (self‐compatible, SC; 2n = 16) forms a clade (eastern lineage) with C. bursa‐pastoris (SC; 2n = 32), which is a sister clade (western lineage) to C. grandiflora (self‐incompatible, SI; 2n = 16) and C. rubella (SC; 2n = 16). Capsella bursa‐pastoris is an autopolyploid species of multiple origin, whereas the Bulgarian endemic C. thracica (SC; 2n = 32) is allopolyploid and emerged from interspecific hybridization between C. bursa‐pastoris and C. grandiflora. The common ancestor of the two lineages was diploid and SI, and its distribution ranged from eastern Europe to central Asia, predominantly confined to steppe‐like habitats. Biogeographic dynamics during the Pleistocene caused geographic and genetic subdivisions within the common ancestor giving rise to the two extant lineages.  相似文献   

8.
Barbara Neuffer  Melanie Paetsch 《Flora》2013,208(10-12):626-640
Evolutive changes in mating systems are often accompanied by changes in flower morphology, such as the reduction in size or even loss of petals, changes in production of volatiles, pollen/ovule ratio, the position between anthers and stigma and the germination time of pollen after pollination. These changes have been merged under the term “selfing syndrome” and often result in new taxonomic species. The evolutionary shift frequently happens parallel within many families and genera, for example within the Brassicaceae family. Within the genus Capsella, which is closely related to the molecular model species pair Arabidopsis lyrata (SI)/A. thaliana (SC), we studied self-incompatible and self-compatible species. SC species C. rubella and C. bursa-pastoris produce in comparison with the SI species C. grandiflora (i) smaller petals as the result of decreased cell division and only less of decreasing cell volume, (ii) less production of pollen in one flower, (iii) show a lesser incision between the two valves of the fruits, in combination with a shorter style, and (iv) have a much quicker fertilization of SC pollen after pollination. Crossing success between the diploid species, between different provenances of the tetraploid C. bursa-pastoris, and between the two diploid species and particular individuals of the self-incompatible C. grandiflora has been proven.  相似文献   

9.
? Flowering is a major developmental transition and its timing in relation to environmental conditions is of crucial importance to plant fitness. Understanding the genetic basis of flowering time variation is important to determining how plants adapt locally. ? Here, we investigated flowering time variation of Capsella bursa-pastoris collected from different latitudes in China. We also used a digital gene expression (DGE) system to generate partial gene expression profiles for 12 selected samples. ? We found that flowering time was highly variable and most strongly correlated with day length and winter temperature. Significant differences in gene expression between early- and late-flowering samples were detected for 72 candidate genes for flowering time. Genes related to circadian rhythms were significantly overrepresented among the differentially expressed genes. ? Our data suggest that circadian rhythms and circadian clock genes play an important role in the evolution of flowering time, and C. bursa-pastoris plants exhibit expression differences for candidate genes likely to affect flowering time across the broad range of environments they face in China.  相似文献   

10.
Polyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S-haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris, which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora. We conduct targeted long-read sequencing to assemble and analyze eight full-length S-locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris. We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis-derived S-haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora-derived S-haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris. Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.Subject terms: Evolution, Polyploidy in plants, Plant evolution, Haplotypes  相似文献   

11.
《Flora》2005,200(4):321-325
During the last decades, it has been shown that arctic plants show larger variation in reproductive strategies than traditionally assumed. Obligate outcrossing based on a self-incompatibility system is, however, very rare in the typically harsh, insect-poor arctic environment. Here we present the second, to our knowledge, documented example of a fully self-incompatible arctic species, Draba palanderiana Kjellm. Because of its large, scented flowers and frequently aborted fruits it has been suggested that this species is strictly outcrossing. To test this hypothesis, we conducted a pollination experiment with two populations from arctic North America. Pollen stainabilities were above 80% in most plants. Full female and male fertility was demonstrated by crosses resulting in fertile F1 offspring. In contrast, no viable seeds were obtained after spontaneous or hand-facilitated selfing, demonstrating that these D. palanderiana populations are fully self-incompatible and thus obligately outcrossing.  相似文献   

12.
Understanding the genetic basis of natural variation is of primary interest for evolutionary studies of adaptation. In Capsella bursa-pastoris, a close relative of Arabidopsis (Arabidopsis thaliana), variation in flowering time is correlated with latitude, suggestive of an adaptation to photoperiod. To identify pathways regulating natural flowering time variation in C. bursa-pastoris, we have studied gene expression differences between two pairs of early- and late-flowering C. bursa-pastoris accessions and compared their response to vernalization. Using Arabidopsis microarrays, we found a large number of significant differences in gene expression between flowering ecotypes. The key flowering time gene FLOWERING LOCUS C (FLC) was not differentially expressed prior to vernalization. This result is in contrast to those in Arabidopsis, where most natural flowering time variation acts through FLC. However, the gibberellin and photoperiodic flowering pathways were significantly enriched for gene expression differences between early- and late-flowering C. bursa-pastoris. Gibberellin biosynthesis genes were down-regulated in late-flowering accessions, whereas circadian core genes in the photoperiodic pathway were differentially expressed between early- and late-flowering accessions. Detailed time-series experiments clearly demonstrated that the diurnal rhythm of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1) expression differed between flowering ecotypes, both under constant light and long-day conditions. Differential expression of flowering time genes was biologically validated in an independent pair of flowering ecotypes, suggesting a shared genetic basis or parallel evolution of similar regulatory differences. We conclude that genes involved in regulation of the circadian clock, such as CCA1 and TOC1, are strong candidates for the evolution of adaptive flowering time variation in C. bursa-pastoris.  相似文献   

13.
14.
Polyploid formation is a major mode of sympatric speciation in flowering plants. Unlike other speciation processes, polyploidization is often assumed to confer instant reproductive isolation. Shared polymorphism across ploidy levels has therefore often been attributed to multiple polyploid origins, whereas the alternative hypothesis of introgressive hybridization has rarely been rigorously tested. Here, we sequence 12 nuclear loci representing 6 genes duplicated by polyploidy in 92 accessions of the tetraploid Capsella bursa-pastoris together with the corresponding loci in 21 accessions of its close diploid relative Capsella rubella. In C. bursa-pastoris accessions from western Eurasia, where the 2 species occur in partial sympatry, we find higher levels of nucleotide diversity than in accessions from eastern Eurasia, where C. rubella does not grow. Furthermore, haplotypes are shared across ploidy levels at 4 loci in western but not in eastern Eurasia. We test whether haplotype sharing is due to retention of ancestral polymorphism or due to hybridization and introgression using a coalescent-based isolation-with-migration model. In western but not in eastern Eurasia, there is evidence for unidirectional gene flow from C. rubella to C. bursa-pastoris. An independent estimate of the timing of dispersal of C. bursa-pastoris to eastern Eurasia indicates that it probably predated introgression. Our results show that polyploid speciation need not result in immediate and complete reproductive isolation, that postpolyploidization hybridization and introgression can contribute significantly to genetic variation in a newly formed polyploid, and that divergence population genetic analysis constitutes a powerful way of testing hypotheses on polyploid speciation.  相似文献   

15.
16.
17.
Mating systems in plants are known to be highly labile traits, with frequent transitions from outcrossing to selfing. The genetic basis for breakdown in self-incompatibility (SI) systems has been studied, but data on variation in selfing rates in species for which the molecular basis of SI is known are rare. This study surveyed such variation in Arabidopsis lyrata (Brassicaceae), which is often considered an obligately outcrossing species, to examine the causes and genetic consequences of changes in its breeding system. Based on controlled self-pollinations in the greenhouse, three populations from the Great Lakes region of North America included a minority of self-compatible (SC) individuals, while two showed larger proportions of SC individuals and all populations contained some individuals capable of setting selfed seeds. Loss of SI was not associated with particular haplotypes at the S-locus (as estimated by alleles amplified at the SRK locus, the gene controlling female specificity) and all populations contained similar numbers of SRK alleles, suggesting that some other genetic factor is responsible for modifying the SI reaction. The loss of SI has resulted in an effective shift in the mating system, as the two populations with a high frequency of SC individuals showed significantly lower microsatellite-based multilocus outcrossing rates and higher inbreeding coefficients than the other populations. Based on microsatellites, observed heterozygosities and genetic diversity were also significantly depressed in these populations. These findings provide the unique opportunity to examine in detail the consequences of mating system changes within a species with a well-characterized SI system.  相似文献   

18.
Phenotypic integration is a necessary characteristic of living organisms that results from genetic, developmental, and functional relationships among traits. The nature of these relationships can be influenced by the environment. We examined patterns of phenotypic integration of six species of rapid cycling Brassica and of Raphanus sativus within a phylogenetic context. Specifically, we tested the hypothesis that hybrid species show intermediate levels of integration in morphological and life-history characters compared to their putative parentals. We used matrix correlation tests to examine if cytogenetic relationships or ecological similarities among species partially explained the patterns of phenotypic integration. There was a significant negative relationship between the ecological and cytogenetic matrices, suggesting that more closely related species were ecologically dissimilar. However, neither ecological nor cytogenetic matrices significantly explained differences among species in the pattern of their phenotypic correlations. Set correlation analysis indicated that important traits within the modules and the strength of the correlations within modules differed across species. We also found that there were a greater number of significant correlations between modules than within modules. Hybrid species were more integrated (had greater number of significant trait correlations) than either of their parents, both within and between modules. However, univariate analyses of character means of the hybrid species were not significantly different from the combined mean of their putative parents for 5, 6, or 7 of the 11 phenotypic characters (for Brassica napus, B. juncea and B. carinata, respectively); for the remaining characters, the hybrids were more similar to one of the parents.  相似文献   

19.
An S-receptor kinase (SRK) gene associated with self-incompatibility in a Brassica napus subsp. oleifera line has been characterized. The SRK-A14 cDNA shows the highest levels of homology in the 5′ end to the SLG-A14 cDNA present at the same locus. RNA blot analysis shows that the SRK-A14 gene is expressed predominantly in the pistil, and at lower levels in the anthers. The predicted amino acid sequences from the extracellular domain of the SRK-A14 gene and three other SRK genes were compared. The different SRK extracellular domains were for the most part very similar, with the exception of two variable regions containing a high level of amino acid alterations. These extracellular domains also contain a region of similarity to the immunoglobulin domains present in members of the immunoglobulin superfamily. These findings may define regions of the SRK protein that are necessary for interactions between SRK and other proteins.  相似文献   

20.
Ceplitis A  Su Y  Lascoux M 《Molecular ecology》2005,14(14):4221-4233
Besides showing an extraordinary degree of phenotypic variability, Capsella bursa-pastoris (Brassicaceae) is also one of the world's most common plant species and a serious weed in many countries. We have employed a coalescent-based Bayesian analysis of chloroplast microsatellite data to infer demographic and evolutionary parameters of this species. Two different demographic models applied to data from seven chloroplast microsatellite loci among 59 accessions show that the effective population size of C. bursa-pastoris is very small indicating a rapid expansion of the species, a result that is in accordance with fossil and historical data. Against this background, analysis of flowering time variation among accessions suggests that ecotypic differentiation in flowering time has occurred recently in the species' history. Finally, our results also indicate that mononucleotide repeat loci in the chloroplast genome can deteriorate in relatively short periods of evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号