首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different assay procedures have been used to quantitate the levels of soybean (Glycine max [L.] Merr.) lectin in various tissues of soybean plants. The assays used were a standard hemagglutination assay, a radioimmunoassay, and an isotope dilution assay. Most of the lectin in seeds was found in the cotyledons, but lectin was also detected in the embryo axis and the seed coat. Soybean lectin was present in all of the tissues of young seedlings, but decreased as the plants matured and was not detectable in plants older than 2 to 3 weeks. Soybean lectin isolated from seeds of several soybean varieties were identical when compared by several methods.  相似文献   

2.
A radioimmunoassay, capable of detecting the Dolichos biflorus lectin at concentrations as low as 400 ng/ml, was developed and used to follow the distribution of this lectin in the plant during its life cycle.

The lectin was first detected in the seeds of the plant 27 days after flowering and rapidly attained the high level of lectin present in the mature seed. The lectin content of the plant is highest in the seeds and cotyledons and decreases as the storage materials of the cotyledons decrease.

A low but measurable amount of material that reacts with antibodies to the seed lectin was detected in the leaves, stems, and pods of the plant. This material gives a precipitin band of only partial identity to the seed lectin when tested in immunodiffusion against antiserum to the seed lectin.

No lectin was detected by the radioimmunoassay in the roots of the plant at any stage of development.

  相似文献   

3.
The stems and leaves of the Dolichos biflorus plant contain a lectin that cross-reacts with antiserum against the seed lectin. This cross-reactive material (CRM) was followed during early seedling growth, stem elongation, and seed development using a specific radioimmunoassay.

No CRM was detected in developing seeds, but very low levels were found in dormant and imbibed seeds. As germination proceeds, the CRM accumulates at the apex of both etiolated and green seedlings in the epicotyl and leaves. Lower amounts of CRM are found in the cotyledons and hypocotyl, but no CRM was detected in the roots.

The amount of CRM in the first and second stem internodes increases during elongation and gradually declines after the completion of elongation. Approximately 80% of the CRM in the stems of 19-day-old Dolichos biflorus plants is associated with the elongating tissues. These results are discussed with respect to the possible roles of lectins in plants.

  相似文献   

4.
T. Hogetsu 《Protoplasma》1990,156(1-2):67-73
Summary Binding of fluorescein-conjugated wheat-germ agglutinin (F-WGA) and some other lectins to tissues from various plants were examined by epifluorescence microscopy. F-WGA bound specifically to the walls of tracheary elements (TEs) and phloem cells of pea roots. The binding sites in TEs were localized only in the secondary thickening and became evident at very early stages of differentiation. Fluorescein-conjugated derivatives ofSolanum tuberosum lectin,Lycopersicon esculentum lectin, andDatura stramonium lectin, which bind N-acetylglucosamine residues as WGA, also bound to the secondary thickening of TEs of pea roots. The binding sites for F-WGA were not removed by extraction with hot EDTA and proteinase K, but removed by extraction with an alkali solution. The alkali-extracted binding sites from the roots were precipitated together with hemicelluloses by 80% ethanol. These results indicate that the binding sites are not present on pectins, proteins, or cellulose, but hemicelluloses. Localized distribution of the binding sites for F-WGA in TEs was found also in a variety of angiosperm plants.Abbreviations BSL-II Bandeiraea simplicifolia lectin II - DSL Datura stramonium lectin - F fluorescein-conjugated - LEL Lycopersicon esculentum lectin - MT microtubule - STL Solanum tuberosum lectin - TE tracheary element - WGA wheat-germ agglutinin  相似文献   

5.
Seeds of six soybean lines (Glycine max (L.) Merr. cv. Columbia, D68-127, Norredo, Sooty, T-102, Wilson 5) have been reported to lack the 120 000 dalton soybean lectin. Immunofiffusion and radioimmunoassay using anti-soybean lectin immunoglobulin failed to detect the lectin in seeds of five lines, but D68-127 seeds contained as much soybean lectin as the control line, Harosoy 63. The D68-127 seed lactin could be purified by affinity chromatography on Sepharose-N-caproylgalactosamine, and was indistinguishable from the conventional soybean lectin by the following criteria: electrophoretic migration in acidic and alkaline buffers, subunit molecular weight and composition, analytical isoelectric focusing, gel filtration chromatography.Phosphate buffered saline extracts of roots, hypocotyls, stems, and leaves of 3–66-day-old Norredo and Harosoy 63 plants lacked soybean lectin, as determined by hemagglutination and radioimmunoassay (detection limit: 1.4 μg soybean lectin/g dry weight tissue). Cotyledons of Harosoy 63 (but not Norredo) contained large quantities of the lectin, which diminished as the plants aged. 5-day-old roots and hypocotyls of 20 soybean lines did not contain soybean lectin. Roots of Columbia, Norredo, Sooty, T-102, Wilson 5, and Harosoy 63 (control) were modulated by a variety of strains of Rhizobium japonicum and Rhizobium sp.  相似文献   

6.
Subcritical water (SCW) has been widely studied for its unique properties both as catalyst and solvent in various chemical processes. The use of SCW to pretreat agricultural products and waste has been extensively studied for producing fermentable sugars. In this study, SCW pretreatment was carried out to increase and/or improve the extractability of oils from oil seeds like Datura stramonium, Jatropha curcas, and sunflower seeds. SCW pretreatment of D. stramonium seeds resulted in 50 % increase of oil yield (from 17.16 to 28.25 %). Although negligible increases were observed from both J. curcas and sunflower seeds, SCW pretreatment allowed full extraction of the oils without grinding and/or dehulling of the seeds. This pretreatment process caused insignificant changes in the composition and quality of the oils extracted. Efficient SCW treatment can be accomplished under mild conditions (175 °C, 3.5 MPa) in a short time (15 min).  相似文献   

7.
Liu H  Yang Z  Yang M  Shen S 《Plant science》2011,181(6):660-666
  相似文献   

8.
The distribution of three cross-reactive materials (CRMs), a toxic protein analogous to canatoxin, CNTX-CRM, a lectin analogous to concanavalin A, Con A-CRM, and a major storage protein, canavalin-CRM, was investigated during successive stages of maturation of Canavalia brasiliensis Mart. seeds. The data obtained by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunological analyses indicated that these proteins share extensive homology with the analogous proteins found in Canavalia ensiformis seeds. The changes in CNTX-CRM and Con A-CRM levels throughout the maturation process were assayed by rocket immunoelectrophoresis. Synthesis of Con A-CRM was detectable at 30 days post-anthesis (DPA) while its hemagglutinating activity appeared only at 35 DPA. The CNTX-CRM was detected as a biologically active protein from 30 DPA onwards. The behavior of CNTX-CRM during maturation of C. brasiliensis seeds was quite distinct from that of Con A-CRM, pointing to different biological roles of these proteins in the seed.  相似文献   

9.
《FEBS letters》1987,220(1):116-120
The lectin from Datura stramonium seeds was separated into three individual isolectins by hydrophobic-interaction chromatography on phenyl-Sepharose. Two of these isolectins are homodimers made up of two A- or two B-subunits, whereas the third is a heterodimer composed of one A- and one B-subunit. Analysis of the homodimeric AA- and BB-isolectins revealed that the A- and B-subunits have similar but not identical Mr values (32 000 and 28 000, respectively), amino acid and carbohydrate compositions. The A-subunit has a higher affinity for N-acetyl-D-glucosamine oligomers than the B-subunit, whereas the latter is more specific for the carbohydrate determinants of some animal glycoproteins such as fetuin, asialofetuin and ovomucoid.  相似文献   

10.
Lathyrus ochrus (L.) DC lectin was found to be localized within the protein bodies of both the cotyledons and embryo axis of mature seeds, by using immunocytochemical-labelling techniques involving rabbit antibodies against lectin, followed by goat antibodies against rabbit immunoglobulins (IgG) either fluoresceine-labelled (light microscopy) or adsorbed on colloidal gold particles (electron microscopy). Deposition of lectin inside the protein bodies was studied during seed development, together with its disappearance associated with the protein bodies coalescence occurring during seed germination. In both cases, a parallel quantification of lectin in ripening seeds and seedlings was carried out by radial immunodiffusion with rabbit antibodies against lectin. Our failure to detect lectin in other parts of the plant during its life-cycle suggests that lectin remains associated only with the protein bodies of seeds and seedlings.  相似文献   

11.
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source–sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source–sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.

A lectin receptor-like kinase regulates yield-related traits and coordinates the source–sink relationship in Arabidopsis.  相似文献   

12.
Four isolectin forms of a seed lectin from mature seed of tepary bean (Phaseolus acutifolius) were isolated using solubility fractionation, affinity chromatography, and high performance liquid chromatography. The subunits are polypeptides with an apparent molecular mass of 30,000 daltons. The 30 kilodalton subunits are produced starting approximately 13 days after flowering and subsequently comprise a major fraction of the proteins found in the mature seed. The amino terminus of each isolectin fraction was determined to be highly homologous with that of the subunits of common bean (Phaseolus vulgaris L.) phytohemagglutinin (PHA). The tepary isolectin cross-reacts with both erythroagglutinating and leucoagglutinating subunits of PHA antibodies, although differential cross-reactivity was noted. A seed protein fraction enriched in tepary bean lectin was found to be toxic to bean bruchid beetles (Acanthoscelides obtectus), when incorporated into their diets at incremental concentrations from (1-5% w/w) above that of PHA concentrations in mature seeds of the susceptible common bean variety “Red Kidney.”  相似文献   

13.
Peanut lectin was purified from seed meal of the Spanish and Jumbo Virginia varieties of peanut (Arachis hypogaea L.) by affinity chromatography on lactose coupled to Sepharose 4B. Polyacrylamide gel isoelectric focusing resolved the lectin preparation from Jumbo Virginia seeds into seven isolectins (pI 5.7, 5.9, 6.0, 6.2, 6.3, 6.5, and 6.7). Seed meal from the Spanish variety contained six isolectins which were indistinguishable from the pI 5.7, 5.9, 6.2, 6.3, 6.5, and 6.7 isolectins from Jumbo Virginia. Quantitative, lactose-specific hemagglutination was used to examine the lectins in tissues of both peanut varieties. In young (3- to 9-day-old) seedlings of each variety, more than 90% of the total amount of lectins detected in the plants was in the cotyledons. Most of the remainder was in hypocotyls, stems, and leaves; young roots contained no more than 4 micrograms of lectin per plant. Lectins were present in all nonroot tissues of 21- to 30-day-old seedlings, except 27-day-old Spanish hypocotyls. As cotyledons of each variety senesced, several of the more basic isolectins decreased to undetectable levels, but the acidic isolectins remained until at least 15 days after planting. Some of the seed isolectins and several apparently new lactose-binding lectins were also identified in affinity-purified extracts of 5-day-old roots and hypocotyls. Rabbit antibodies raised against the Jumbo Virginia seed isolectin preparation reacted with seed, cotyledon, and hypocotyl lectin preparations from both varieties. Analysis of seed lectin preparations from seven varieties of A. hypogaea and of a related species (A. villosulicarpa) indicated that isolectin composition in Arachis may be a characteristic of both the species and the subspecies (botanical type) to which the variety belongs.  相似文献   

14.
The aleurone layer of mature Arabidopsis thaliana seed plays important roles in seed germination and dormancy. However, the proteomic profile of this cell layer is unknown partly because it is difficult to separate this thin cell layer from the mature seeds. In this study, we have used a simple technique to separate the aleurone layer along with the seed coat following germination of seeds and determined for the first time the putative protein composition of this cell layer. By subjecting the total proteins extracted from the seed coat to 2D gel electrophoresis followed by liquid chromatography/tandem mass spectrometry, we identified four AGI loci, AT4G28520, AT5G44120, AT1G03880, and AT1G03890; all of which belong to the seed storage family of proteins. Because in Arabidopsis the diploid aleurone cells of the seed coat perform protein storage functions similar to that of triploid endosperm of other plant species, it is assumed that the above AGI loci are associated with the aleurone layer of the seed coat.  相似文献   

15.

Background and aims

Seeds are inhabited by diverse bacterial and fungal taxa whose colonization patterns are little understood. We hypothesized, however, that specific niches within seeds host microbes.

Methods

In this study, the putative presence of bacteria, inhabiting the seed endosphere of an angiosperm, the melon Cucumis melo reticulatus group cv. ‘Dulce’, was examined by scanning electron microscopy (SEM) and confocal laser-scanning microscopy coupled with double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH).

Results

SEM images showed microbial-like structures in different tissues and FISH revealed endophytic bacteria colonizing the outer and inner seed parts, on perisperm/endosperm envelope, inside the cotyledons as parts of the embryo, and, to a lesser extent, inside embryonic hypocotyl-root axis tissues. Alphaproteobacteria were shown to inhabit the seed coat and the envelope surrounding the embryonic hypocotyl-root tissues, but could not be seen in the cotyledons, whereas Betaproteobacteria were only detected in the outer seed coat. Some Gammaproteobacteria were also seen in the outer seed coat, but were mainly visualized in the cotyledons with a few inside the seed’s embryonic hypocotyl-root tissues, among other bacteria. Firmicutes were visualized inside the seed coat, but mostly inside the cotyledon tissues, on the perisperm/endosperm envelope and inside the embryonic hypocotyl-root axis tissues. Microscopy revealed Actinobacteria inside the inner and outer seed coat and inside the embryonic parts such as cotyledons, with a few inside the hypocotyl-root axis.

Conclusions

This is the first demonstration of niches for the most active groups of bacteria inhabiting different seed tissues of an angiosperm.
  相似文献   

16.
The distribution of lectin in parental tissues, roots formed de novo from parental stem tissue, and derived callus cells of Psophocarpus tetragonolobus has been measured by hemagglutinating activity and radioimmunoassay. The antisera used for the radioimmunoassay was raised in rabbits to lectin isolated from seeds by affinity chromatography using insolubilized hog gastric mucin. The distribution of lectin in buffer extracts of the tissues (or cells) and the extracellular medium favors the tissues for in vitro grown roots, regardless of the culture conditions used. The lectin content of the extracellular medium is more significant for callus, regardless of its conditions of culture. The lectin activity of extracts of in vitro grown roots was higher than that of mature roots from whole plants. Differences in relative levels of lectin activity measured by hemagglutination and by radioimmunoassay, and differences in saccharide inhibition of hemagglutination, suggest the presence of multiple lectins in extracts of different tissues.  相似文献   

17.
《Phytochemistry》1987,26(12):3201-3205
The enzyme,α-mannosidase and the lectin, concanavalin A, both of which interact with α-D-mannosides, are present in substantial amounts in the mature seeds of Canavalia ensiformis. The changes in the levels of these two proteins and their mRNA have been followed throughout seed development. Although both proteins start appearing in the seeds at day 24 after pod formation, there is a difference in the developmental patterns. While the increase in the activity of α-mannosidase is gradual and continues up until about day 44 followed by a slow phase till the desiccation stage, Con A after a lag phase which lasts to about day 30 shows a logarithmic increase up to about the 36th day followed by a plateau thereafter upto the desiccation stage. The highest amounts of functional mRNA for these two proteins are found at the early stages of seed development, well ahead of the period of highest protein deposition, thereby indicating that post-translational modifications of these proteins are slow and distinct from those of other legumes.  相似文献   

18.
The carbohydrate-binding properties of the Datura stramonium seed lectin were studied by equilibrium dialysis, quantitative precipitation of natural and synthetic glycoproteins, and hapten inhibition of precipitation. The dimeric lectin (Mr = 86,000) possesses two carbohydrate-binding sites for N,N′,N′',N?-tetraacetylchitotetritol/mol protein, with an apparent Ka = 8.7 × 103M?1 at 4 °C. Whereas fetuin and orosomucoid reacted poorly with the Datura lectin, the asialo derivatives of these glycoproteins gave strong precipitation with the lectin. Carcinoembryonic antigen, type 14 pneumococcal capsular polysaccharide, and bovine serum albumin, highly substituted with N,N′- diacetylchitobiose units, also precipitated the lectin. Of the homologous series of chitin oligosaccharides tested, N,N′,N?-triacetylchitotriose was over 6-fold more potent than the disaccharide (N′,N′-diacetylchitobiose) which, in turn, was 90 times more reactive than N-acetyl-d-glucosamine.N-Acetyllactosamine [β-d-Gal-(1 → 4)-d-GlcNAc] was also a potent inhibitor of Datura lectin being equivalent to N,N′-diacetylchitobiose. The requirement for an N-acetyl-d-glucosaminyl unit linked at the C-4 position was established. The biantennary pentasaccharide (penta-2,6) was a 500-fold more potent inhibitor than N-acetyllactosamine, suggesting that it might interact with both saccharide-binding sites of the Datura lectin simultaneously.  相似文献   

19.
cDNA cloning and in vitro synthesis of the Dolichos biflorus seed lectin   总被引:2,自引:0,他引:2  
The Dolichos biflorus seed lectin contains two structurally related subunits. A cDNA library was constructed using RNA isolated from D. biflorus seeds actively synthesizing the seed lectin. The library was expressed in Escherichia coli using a lambda Charon 16 vector, and lectin-specific antiserum was used to isolate a seed lectin cDNA. Hybridization of the D. biflorus seed lectin cDNA to RNA isolated from seeds actively producing both lectin subunits identifies a single-size RNA of 1100 bases. An oligodeoxyribonucleotide probe, constructed from an amino acid sequence common to both lectin subunits, detects the same size RNA. Translation of seed mRNA in vitro and immunoprecipitation of translation products using a lectin-specific antiserum yields a single polypeptide of slightly higher molecular mass than the largest seed lectin subunit. This seed lectin precursor is indistinguishable from a polypeptide synthesized from mRNA hybrid selected by the seed lectin cDNA. These data support the existence of a single polypeptide precursor for both subunit types of the D. biflorus seed lectin and suggest that differences between the subunit types arise by posttranslational processing.  相似文献   

20.
Seed size and shape, seed coat surface pattern, seed coat thickness, and endosperm structure were investigated in Androsace septentrionalis, Cortusa matthioli, Hottonia palustris, Primula elatior, Soldanella carpatica (Primulaceae), Anagallis arvensis, A. minima, Cyclamen purpurascens, Glaux maritima, Lysimachia nemorum, L. vulgaris, Trientalis europaea (Myrsinaceae), and Samolus valerandi (Theophrastaceae). Three seed size categories were distinguished on the basis of biometric measurements. Almost all seeds examined were found to be small with an angular shape classified as sectoroid or polyhedral. A new type of seed shape, suboval, was identified for H. palustris. Cyclamen purpurascens seeds differed from seeds of all other species examined because of their large size, subglobose shape, and concave hilar area. Despite the different shape types, the length/width ratio of the seeds examined was constant, while their hilum length/width ratio was a highly variable feature. Three types of seed surface patterns were observed: (1) reticulate, (2) tuberculate with secondary striations, and (3) poroid-alveolate with the presence of a spongy outer layer. For seeds of Anagallis arvensis, A. minima, Cortusa matthioli, Lysimachia nemorum, and Soldanella carpatica, secondary seed sculpture was described. The seed coats of all species examined were two-layered, and great differences in testa thickness were found (9.9?C128.6???m). In general, seeds of the Myrsinaceae species were more often characterized by thick testa. Different proportions in thickness of the inner and outer testa layers were observed. In seeds with reticulate seed patterns, the inner testa layer was twice to several times thicker than the outer layer, while the opposite proportions were observed in seeds with the tuberculate or poroid-alveolate seed sculpture pattern. In seeds of all species examined, oxalate crystals were present on the surface of the inner testa layer. Thus, the presence or absence of oxalate crystals in testa is not a feature distinguishing species with angular or subglobose seeds. Four types of endosperm structure were identified according to the thickness of the endosperm cell walls and the relief of their inner surface: (1) with evenly thickened and smooth cell walls, (2) with evenly thickened cell walls and circular or helical thickenings on their inside surfaces, (3) with very thick, but not evenly thickened cell walls with constrictions (??pitted??), and (4) with very thin papery and undulate cell walls. There is no rule concerning the seed shape, type of the seed sculpture, testa thickness, or endosperm structure that corresponds to the family affiliation of the species examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号