首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor receptor (EGFR), the prototypic receptor protein tyrosine kinase, is a major regulator of growth and survival for many epithelial cell types. We report here that receptor-type protein-tyrosine phosphatase-kappa (RPTP-kappa) dephosphorylates EGFR and thereby regulates its function in human keratinocytes. Protein-tyrosine phosphatase (PTP) inhibitors induced EGFR tyrosine phosphorylation in intact primary human keratinocytes and cell-free membrane preparations. Five highly expressed RPTPs (RPTP-beta, delta, kappa, mu, and xi) were functionally analyzed in a Chinese hamster ovary (CHO) cell-based expression system. Full-length human EGFR expressed in CHO cells, which lack endogenous EGFR, displayed high basal (i.e. in the absence of ligand) tyrosine phosphorylation. Co-expression of RPTP-kappa, but not other RPTPs, specifically reduced basal EGFR tyrosine phosphorylation. RPTP-kappa also reduced epidermal growth factor-dependent EGFR tyrosine phosphorylation in CHO cells. Purified RPTP-kappa preferentially dephosphorylated EGFR tyrosines 1068 and 1173 in vitro. Overexpression of wild-type or catalytically inactive RPTP-kappa reduced or enhanced, respectively, basal and EGF-induced EGFR tyrosine phosphorylation in human keratinocytes. Furthermore, siRNA-mediated knockdown of RPTP-kappa increased basal and EGF-stimulated EGFR tyrosine phosphorylation and augmented downstream Erk activation in human keratinocytes. RPTP-kappa levels increased in keratinocytes as cells reached confluency, and overexpression of RPTP-kappa in subconfluent keratinocytes reduced keratinocyte proliferation. Taken together, the above data indicate that RPTP-kappa is a key regulator of EGFR tyrosine phosphorylation and function in human keratinocytes.  相似文献   

2.

Aims

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic clinical benefits in advanced non-small cell lung cancer (NSCLC); however, resistance remains a serious problem in clinical practice. The present study analyzed mTOR-associated signaling-pathway differences between the EGFR TKI-sensitive and -resistant NSCLC cell lines and investigated the feasibility of targeting mTOR with specific mTOR inhibitor in EGFR TKI resistant NSCLC cells.

Methods

We selected four different types of EGFR TKI-sensitive and -resistant NSCLC cells: PC9, PC9GR, H1650 and H1975 cells as models to detect mTOR-associated signaling-pathway differences by western blot and Immunoprecipitation and evaluated the antiproliferative effect and cell cycle arrest of ku-0063794 by MTT method and flow cytometry.

Results

In the present study, we observed that mTORC2-associated Akt ser473-FOXO1 signaling pathway in a basal state was highly activated in resistant cells. In vitro mTORC1 and mTORC2 kinase activities assays showed that EGFR TKI-resistant NSCLC cell lines had higher mTORC2 kinase activity, whereas sensitive cells had higher mTORC1 kinase activity in the basal state. The ATP-competitive mTOR inhibitor ku-0063794 showed dramatic antiproliferative effects and G1-cell cycle arrest in both sensitive and resistant cells. Ku-0063794 at the IC50 concentration effectively inhibited both mTOR and p70S6K phosphorylation levels; the latter is an mTORC1 substrate and did not upregulate Akt ser473 phosphorylation which would be induced by rapamycin and resulted in partial inhibition of FOXO1 phosphorylation. We also observed that EGFR TKI-sensitive and -resistant clinical NSCLC tumor specimens had higher total and phosphorylated p70S6K expression levels.

Conclusion

Our results indicate mTORC2-associated signaling-pathway was hyperactivated in EGFR TKI-resistant cells and targeting mTOR with specific mTOR inhibitors is likely a good strategy for patients with EGFR mutant NSCLC who develop EGFR TKI resistance; the potential specific roles of mTORC2 in EGFR TKI-resistant NSCLC cells were still unknown and should be further investigated.  相似文献   

3.
4.
Overexpression of the epidermal growth factor receptor (EGFR, ErbB1, HER1) is frequent in head and neck squamous cell carcinomas (HNSCCs) and correlates with disease progression. Inhibition of EGFR with the kinase inhibitor AG1478 abolished receptor phosphorylation and reduced cell proliferation. However, treatment of HNSCC cells with cetuximab (Erbitux), a monoclonal antibody designed to block the EGFR ligand binding site, led to paradox EGFR activation due to hyperphosphorylation of tyrosine 1173, however, with a concomitant reduction in Erk1/2 phosphorylation levels. No pronounced influence on cell proliferation levels could be observed after treatment with this antibody. Since cetuximab appears able to activate EGFR in HNSCC cell lines, it is necessary to rethink the exact mechanisms by which cetuximab that recently was approved for the treatment of advanced head and neck cancer, inhibits tumor growth.  相似文献   

5.
Tumor necrosis factor (TNF) is a cytokine which induces cytotoxicity in some but not all tumor cells. Initial studies of five tumor cell lines demonstrated that TNF was able to rapidly (within 30 min) modulate tyrosine protein kinase activity of epidermal growth factor (EGF) receptors on tumor cell lines which were sensitive to the cytotoxic effects of TNF but not alter EGF receptor kinase activity in TNF-resistant tumor cells. Two tumor cell lines (ME-180 cervical carcinoma and T24 bladder carcinoma) which have been shown to express similar TNF-binding characteristics but differ in their sensitivity to the cytotoxic actions of TNF were chosen for further characterization. Treatment of TNF-sensitive ME-180 cells with 1 nM TNF resulted in a 3-fold stimulation of EGF receptor tyrosine protein kinase activity within 10 min which correlated with increased phosphorylation of EGF receptor protein itself. In addition, dose-response studies indicate that similar concentrations of TNF modulate both ME-180 cell growth and EGF receptor kinase activity. Treatment of TNF-resistant T24 cells showed that TNF had no significant effect on their growth, EGF receptor tyrosine protein kinase activity, or phosphorylation of EGF receptor protein although EGF receptor kinase activity was stimulated by EGF. Quantitation of receptors expressed on the surface of ME-180 and T24 cells demonstrated a 3-fold difference between the number of EGF-binding sites on T24 (100,000) versus ME-180 cells (300,000), suggesting the relative abundance of EGF receptor does not solely account for differential effects of TNF on EGF receptor activation in these two cell lines. Phosphoamino acid analysis of EGF receptor from 32P-equilibrated ME-180 cells demonstrated that TNF-induced phosphorylation of amino acids which was quantitatively similar to that of EGF but distinct from the effects of phorbol ester. However, unlike EGF, TNF was unable to stimulate EGF receptor kinase activity in ME-180 cell lysates. The kinetics of EGF receptor activation and the metabolic consequence of activation of EGF receptor activity by TNF appear to be distinct from those induced by EGF. These results suggest that TNF-induced modulation of EGF receptor occurs through a unique mechanism and may play a role in the cytotoxic actions of TNF.  相似文献   

6.
Breast cancers show a lack of response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), despite 30% of tumors expressing EGFR. The mechanism of this resistance is unknown; however, we have recently shown that Met kinase activity compensates for loss of EGFR kinase activity in cell culture models. Met has been implicated in the pathogenesis of breast tumors and therefore may cooperate with EGFR for tumor growth. Here we have found that EGFR phosphorylation and cell proliferation is in part regulated by Met expression. In addition, we found that Met constitutive phosphorylation occurred independent of the Met ligand hepatocyte growth factor (HGF). Ligand-independent Met phosphorylation is mediated by Met amplification, mutation, or overexpression and by Met interaction with other cell surface molecules. In SUM229 breast cancer cells, we found that Met was not amplified or mutated, however it was overexpressed. Met overexpression did not directly correlate with ligand-independent Met phosphorylation as the SUM229 cell line was the only Met expressing breast cancer line with constitutive Met phosphorylation. Interestingly, Met expression did correlate with EGFR expression and we identified an EGFR/Met complex via co-immunoprecipitation. However, we only observed Met constitutive phosphorylation when c-Src also was part of this complex. Ligand-independent phosphorylation of Met was decreased by down regulating EGFR expression or by inhibiting c-Src kinase activity. Lastly, inhibiting EGFR and Met kinase activities resulted in a synergistic decrease in cell proliferation, supporting the idea that EGFR and Met functionally, as well as physically interact in breast cancer cells to regulate response to EGFR inhibitors.  相似文献   

7.
Overexpression of Met is a common finding in thyroid carcinomas. Recently, we reported on overexpression and ligand-independent constitutive activation of Met in anaplastic thyroid carcinoma cells. In the present study we have investigated a putative mechanism for this phenomenon. Cell lines with constitutively activated Met expressed both TGF-alpha mRNA and protein. Western blot analysis revealed expression of receptors for epidermal growth factor (EGFR) in all carcinoma cell lines; in tumor cells with elevated levels of TGF-alpha mRNA there was a constitutive tyrosine phosphorylation of the EGFRs. Preincubation of carcinoma cells with suramin decreased EGFR activation and downregulated Met expression as well as the ligand-independent phosphorylation of Met. Similar results were obtained with a EGFR tyrosine kinase inhibitor, AG 1478. The MEK inhibitor U0126 had an even more pronounced effect compared to AG 1478, indicating a Ras/MAPK-mediated signal in the regulation of Met expression and activation. Inhibition of EGFR signaling also decreased proliferation of the anaplastic thyroid carcinoma cells. Thus, aberrant activation of EGFRs may lead to an overexpression and activation of Met, which may be of importance for the malignant phenotype of anaplastic thyroid carcinomas.  相似文献   

8.
We report a highly specific fluorescence lifetime imaging microscopy (FLIM) method for monitoring epidermal growth factor receptor (EGFR) phosphorylation in cells based on fluorescence resonance energy transfer (FRET). EGFR phosphorylation was monitored using a green fluorescent protein (GFP)-tagged EGFR and Cy3-conjugated anti-phosphotyrosine antibodies. In this FRET-based imaging method, the information about phosphorylation is contained only in the (donor) GFP fluorescence lifetime and is independent of the antibody-derived (acceptor) fluorescence signal. A pixel-by-pixel reference lifetime of the donor GFP in the absence of FRET was acquired from the same cell after photobleaching of the acceptor. We show that this calibration, by acceptor photobleaching, works for the GFP-Cy3 donor-acceptor pair and allows the full quantitation of FRET efficiencies, and therefore the degree of exposed phosphotyrosines, at each pixel. The hallmark of EGFR stimulation is receptor dimerisation [1] [2] [3] [4] and concomitant activation of its intracellular tyrosine kinase domain [5] [6] [7]. Trans-autophosphorylation of the receptor [8] [9] on specific tyrosine residues couples the activated dimer to the intracellular signal transduction machinery as these phosphorylated residues serve as docking sites for adaptor and effector molecules containing Src homology 2 (SH2; reviewed in [10]) and phosphotyrosine-binding (PTB) [11] domains. The time-course and extent of EGFR phosphorylation are therefore important determinants of the underlying pathway and resulting cellular response. Our results strongly suggest that secondary proteins are recruited by activated receptors in endosomes, indicating that these are active compartments in signal transduction.  相似文献   

9.
The biological activity of epidermal growth factor (EGF) is mediated through the intrinsic tyrosine kinase activity of the EGF receptor (EGFR). In numerous cell types, binding of EGF to the EGFR stimulates the tyrosine kinase activity of the receptor eventually leading to cell proliferation. In tumor-derived cell lines, which overexpress the EGFR, however, growth inhibition is often seen in response to EGF. The mechanism for growth inhibition is unclear. To study the relationship between growth inhibition and EGFR kinase activity, we have used a cell line (PC-10) derived from a human squamous cell carcinoma that overexpresses EGFR. When exposed to 25 ng/ml EGF at low cell densities (1,300 cells/cm2), PC-10 cells exhibit cell death. In contrast, if EGF is added to high density cultures, no EGF mediated cell death is seen. When PC-10 cells were maintained at confluency in the presence of 25 ng/ml EGF for a period of 1 month, they were subsequently found competent to proliferate at low density in the presence of EGF. We designate these cells APC-10. The APC-10 cells exhibited a unique response to EGF, and no concentration of EGF tested could produce cell death. By 125I-EGF binding analysis and [35S]methionine labeling of EGFR, it was found that the total number of EGFR on the cell surface of APC-10 was not decreased relative to PC-10. No difference between PC-10 and APC-10 was seen in EGF binding affinity to the EGFR. Significantly, EGF stimulated autophosphorylation of the EGFR of APC-10 was 8–10-fold lower than that of PC-10. This reduced kinase activity was also seen in vitro in membrane preparations for EGFR autophosphorylation as well as phosphorylation of an exogenously added substrate. No difference between PC-10 and APC-10 in the overall pattern of EGFR phosphorylation in the presence or absence of EGF was detectable. However, the serine and threonine phosphorylation of the EGFR of APC-10 cells was consistently 2–3-fold lower than that seen in PC-10 cells. These results suggest a novel mechanism for EGFR overexpressing cells to survive EGF exposure, one that involves an attenuation of the tyrosine kinase activity of the EGFR in the absence of a change in receptor levels or receptor affinity. © 1994 Wiley-Liss, Inc.  相似文献   

10.
11.
High expression of the epidermal growth factor receptor (EGFR) in breast carcinoma confers a growth advantage to the tumor cells. The EGFR tyrosine kinase inhibitor (EGFR-TKI) ZD1839 ('Iressa') has clinical activity in a wide range of tumor types, although the mechanism(s) by which it exerts its antitumor activity effects remain unclear. We analyzed the ability of ZD1839 to induce apoptosis and/or inhibition of proliferation in breast carcinoma cell lines, as well any association between this ability and the downregulation activity of MAPK and Akt, two recently proposed markers of ZD1839 activity. Proliferation, survival, and activation of Akt and MAPK were evaluated in six human breast cancer cell lines expressing various levels of EGFR and HER2 and exposed to ZD1839. EGFR and HER2 expression levels were determined using specific monoclonal antibodies and FACS analysis. The effects of ZD1839 were independent of EGFR expression levels, but were influenced by high HER2 expression. ZD1839 significantly reduced the rate of [3H]-thymidine incorporation in the four sensitive cell lines, while apoptosis was also induced in two of these cell lines. No correlation was found between the cytostatic or cytotoxic effects of ZD1839 and its ability to downregulate MAPK and Akt activity in the tumor cell lines. Our data suggest that the antitumor activity of ZD1839 is due to a cytostatic effect, and involves apoptosis induction in a subset of sensitive cells only, and that neither MAPK nor Akt is a reliable marker of ZD1839 activity.  相似文献   

12.
Recent evidence indicates that cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) are involved in hepatocarcinogenesis. This study was designed to evaluate the possible interaction between the COX-2 and EGFR signaling pathways in human hepatocellular carcinoma (HCC) cells. Immunohistochemical analysis using serial sections of human HCC tissues revealed positive correlation between COX-2 and EGFR in HCC cells (P < 0.01). Overexpression of COX-2 in cultured HCC cells (Hep3B) or treatment with PGE(2) or the selective EP(1) receptor agonist, ONO-DI-004, increased EGFR phosphorylation and tumor cell invasion. The PGE(2)-induced EGFR phosphorylation and cell invasiveness were blocked by the EP(1) receptor siRNA or antagonist ONO-8711 and by two EGFR tyrosine kinase inhibitors, AG1478 and PD153035. The EP(1)-induced EGFR transactivation and cell invasion involves c-Src, in light of the presence of native binding complex of EP(1)/Src/EGFR and the inhibition of PGE(2)-induced EGFR phosphorylation and cell invasion by the Src siRNA and the Src inhibitor, PP2. Further, overexpression of COX-2 or treatment with PGE(2) also induced phosphorylation of c-Met, another receptor tyrosine kinase critical for HCC cell invasion. Moreover, activation of EGFR by EGF increased COX-2 promoter activity and protein expression in Hep3B and Huh-7 cells, whereas blocking PGE(2) synthesis or EP(1) attenuated EGFR phosphorylation induced by EGF, suggesting that the COX-2/PGE(2)/EP(1) pathway also modulate the activation of EGFR by its cognate ligand. These findings disclose a cross-talk between the COX-2/PGE(2)/EP(1) and EGFR/c-Met signaling pathways that coordinately regulate human HCC cell invasion.  相似文献   

13.
Upregulated epidermal growth factor (EGF) receptor (EGFR) expression and EGFR-induced signaling have been correlated with progression to invasion and metastasis in a wide variety of carcinomas, but the mechanism behind this is not well understood. We show here that, in various human carcinoma cells that overexpress EGFR, EGF treatment induced rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) associated with downregulation of its kinase activity. The downregulation of FAK activity was both required and sufficient for EGF-induced refractile morphological changes, detachment of cells from the extracellular matrix, and increased tumor cell motility, invasion, and metastasis. Tumor cells with downregulated FAK activity became less adherent to the extracellular matrix. However, once cells started reattaching, FAK activity was restored by activated integrin signaling. Moreover, this process of readhesion and spreading could not be abrogated by further EGF stimulation. Interruption of transforming growth factor alpha-EGFR autocrine regulation with an EGFR tyrosine kinase inhibitor led to a substantial increase in FAK tyrosine phosphorylation and inhibition of tumor cell invasion in vitro. Consistent with this, FAK tyrosine phosphorylation was reduced in cells from tumors growing in transplanted, athymic, nude mice, which have an intact autocrine regulation of the EGFR. We suggest that the dynamic regulation of FAK activity, initiated by EGF-induced downregulation of FAK leading to cell detachment and increased motility and invasion, followed by integrin-dependent reactivation during readhesion, plays a role in EGF-associated tumor invasion and metastasis.  相似文献   

14.
Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported "signaling endosome" model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium (tau(1/2) < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF.  相似文献   

15.
Accumulating evidence indicates that interactions between the epidermal growth factor receptor (EGFR) and the nonreceptor tyrosine kinase c-Src may contribute to an aggressive phenotype in multiple human tumors. Previous work from our laboratory demonstrated that murine fibroblasts which overexpress both these tyrosine kinases display synergistic increases in DNA synthesis, soft agar growth, and tumor formation in nude mice, and increased phosphorylation of the receptor substrates Shc and phospholipase gamma as compared with single overexpressors. These parameters correlated with the ability of c-Src and EGFR to form an EGF-dependent heterocomplex in vivo. Here we provide evidence that association between c-Src and EGFR can occur directly, as shown by receptor overlay experiments, and that it results in the appearance of two novel tyrosine phosphorylations on the receptor that are seen both in vitro and in vivo following EGF stimulation. Edman degradation analyses and co-migration of synthetic peptides with EGFR-derived tryptic phosphopeptides identify these sites as Tyr845 and Tyr1101. Tyr1101 lies within the carboxyl-terminal region of the EGFR among sites of receptor autophosphorylation, while Tyr845 resides in the catalytic domain, in a position analogous to Tyr416 of c-Src. Phosphorylation of Tyr416 and homologous residues in other tyrosine kinase receptors has been shown to be required for or to increase catalytic activity, suggesting that c-Src can influence EGFR activity by mediating phosphorylation of Tyr845. Indeed, EGF-induced phosphorylation of Tyr845 was increased in MDA468 human breast cancer cells engineered to overexpress c-Src as compared with parental MDA 468 cells. Furthermore, transient expression of a Y845F variant EGFR in murine fibroblasts resulted in an ablation of EGF-induced DNA synthesis to nonstimulated levels. Together, these data support the hypothesis that c-Src-mediated phosphorylation of EGFR Tyr845 is involved in regulation of receptor function, as well as in tumor progression.  相似文献   

16.
17.
The use of platinum complexes for the therapy of breast cancer is an emerging new treatment modality. To gain insight into the mechanisms underlying cisplatin resistance in breast cancer, we used estrogen receptor-positive MCF-7 cells as a model system. We generated cisplatin-resistant MCF-7 cells and determined the functional status of epidermal growth factor receptor (EGFR), MAPK, and AKT signaling pathways by phosphoreceptor tyrosine kinase and phospho-MAPK arrays. The cisplatin-resistant MCF-7 cells are characterized by increased EGFR phosphorylation, high levels of AKT1 kinase activity, and ERK1 phosphorylation. In contrast, the JNK and p38 MAPK modules of the MAPK signaling pathway were inactive. These conditions were associated with inactivation of the p53 pathway and increased BCL-2 expression. We investigated the expression of genes encoding the ligands for the ERBB signaling cascade and found a selective up-regulation of amphiregulin expression, which occurred at later stages of cisplatin resistance development. Amphiregulin is a specific ligand of the EGFR (ERBB1) and a potent mitogen for epithelial cells. After exposure to cisplatin, the resistant MCF-7 cells secreted amphiregulin protein over extended periods of time, and knockdown of amphiregulin expression by specific short interfering RNA resulted in a nearly complete reversion of the resistant phenotype. To demonstrate the generality and importance of our findings, we examined amphiregulin expression and cisplatin resistance in a variety of human breast cancer cell lines and found a highly significant correlation. In contrast, amphiregulin levels did not significantly correlate with cisplatin resistance in a panel of lung cancer cell lines. We have thus identified a novel function of amphiregulin for cisplatin resistance in human breast cancer cells.  相似文献   

18.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

19.
The epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family of receptors. For many years it has been believed that receptor activation occurs via a monomer-dimer transition that is associated with a conformational change to activate the kinase. However, little is known about the quaternary state of the receptor at normal levels of expression (<10(5) receptors/cell). We employed multidimensional microscopy techniques to gain insight into the state of association of the human EGFR, in the absence and presence of ligand, on the surface of intact BaF/3 cells (50,000 receptors/cell). Image correlation microscopy of an EGFR-enhanced green fluorescent protein chimera was used to establish an average degree of aggregation on the submicron scale of 2.2 receptors/cluster in the absence of ligand increasing to 3.7 receptors/cluster in the presence of ligand. Energy transfer measurements between mixtures of fluorescein isothiocyanate-EGF and Alexa 555-EGF were performed using fluorescence lifetime imaging microscopy as a function of the donor: acceptor labeling ratio to gain insight into the spatial disposition of EGFR ligand binding sites on the nanometer scale. In the context of a two-state F?rster resonance energy transfer (FRET)/non-FRET model, the data are consistent with a minimum transfer efficiency of 75% in the FRET population. The microscopy data are related to biophysical data on the EGFR in the A431 cell line and the three-dimensional structure of the ligated EGFR extracellular domain. In the context of a monomer-dimer-oligomer model, the biophysical data are consistent with a significant fraction of ligated EGFR tetramers comprising two dimers juxtaposed in a side-by-side (or slightly staggered) arrangement. Our data are consistent with a specific higher order association of the ligand-bound EGFR on the nanometer scale and indicate the existence of distinct signaling entities beyond the level of the EGFR dimer which could play an important role in receptor transactivation.  相似文献   

20.
Fluorescence resonance energy transfer between epidermal growth factor (EGF) molecules, labeled with fluorescent reporter groups, was used as a monitor for EGF receptor-receptor interactions in plasma membranes isolated from human epidermoid A431 cells. Epidermal growth factor molecules labeled at the amino terminus with fluorescein isothiocyanate served as donor molecules in these energy transfer measurements, while EGF molecules labeled with eosin isothiocyanate at the amino terminus served as the energy acceptors. Both of these derivatives were shown to be active in binding to membrane receptors and in the activation of the endogenous receptor/tyrosine kinase activity. We found that membranes in the absence of added metal ion activators showed relatively little energy transfer (approximately 10% donor quenching) between the labeled growth factors. However, divalent metal ion activators of the EGF receptor/tyrosine kinase caused a significant increase in the extent of energy transfer between the labeled EGF molecules. Specifically, in the presence of 20 mM MgCl2, the extent of quenching of the donor fluorescence increased to 25% (from 10% in the absence of metal), while in the presence of 4 mM MnCl2, the extent of energy transfer was increased still further to 40-50%. The addition of an excess of EDTA resulted in the reversal of the observed energy transfer to basal levels. The increased energy transfer in the presence of these divalent cations correlated well with the ability of these metals to stimulate the EGF receptor/tyrosine kinase activity. However, the extent of receptor-receptor interactions measured by energy transfer was independent of receptor autophosphorylation. Overall, these results suggest that conditions under which the EGF receptor is primed to be active as a tyrosine kinase, within a lipid milieu, result in an increased aggregation of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号