首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro system capable of packaging bacteriophage T7 deoxyribonucleic acid (DNA) into phage heads to form viable phage particles has been used to monitor the biological consequences of DNA dam aged by alkylating agents, and an in vitro DNA replication system has been used to examine the ability of alkylated T7 DNA to serve as template for DNA synthesis. The survival of phage resulting from in vitro packaging of DNA preexposed to various concentrations of methyl methane sulfonate or ethyl methane sulfonate closely paralleled the in vivo situation, in which intact phage were exposed to the alkylating agents. Host factors responsible for survival of alkylated T7 have been examined by using wild-type strains of EScherichia coli and mutants deficient in DNA polymerase I (polA) or 3-methyladenine-DNA glycosylase (tag). For both in vivo and in vitro situations, a deficiency in 3-methyladenine-DNA glycosylase dramatically reduced phage survival relative to that in the wild type, whereas a deficiency in DNA polymerase I had an intermediate effect. Furthermore, when the tag mutant was used as an indicator strain, phage survival was enhanced when alkylated DNA was packaged with extracts prepared from a wild-type strain in place of the tag mutant or by complementing a tag extract with an uninfected tag+ extract, indicating in vitro repair during packaging.  相似文献   

2.
Summary Extracts derived from E. coli cells infected non-permissively with phage T1 amber mutants were used in an in vitro system to investigate the packaging of T1 DNA into phage heads. The standard extract used infections with amber mutants in genes 1 and 2 (g1-g2-) which are defective in T1 DNA synthesis but can synthesis the proteins required for particle morphogenesis. g1-g2- extracts packaged T1+ virion DNA molecules with an efficiency of 3×105 pfu/g DNA. Extracts from cells infected with phage also defective in DNA synthesis but carrying additional mutations in genes 3.5 or 4 which are required for concatemer formation in vivo (g1-g3.5- and g1-g4- extracts) package T1 virion DNA at substantially lower efficiencies.Analysis of the DNA products from these in vitro reaction showed that concatemeric DNA is formed very efficiently by g1-g2- extracts but not by g1-g3.5- or g1-g4- extracts. These results are interpreted as evidence that the T1 in vitro DNA packaging system primarily operates in a similar manner to the in vivo headful mechanism. This is achieved in vitro by the highly efficient conversion of T1 virion DNA into concatemers which are then packaged with a much lower efficiency into heads to form infectious particles. A secondary pathway for packaging T1 DNA into heads and unrelated to the headful mechanism may also exist.  相似文献   

3.
DNA packaging in vitro by an isolated bacteriophage T7 procapsid.   总被引:8,自引:5,他引:3       下载免费PDF全文
The results of previous in vivo studies indicate that a DNA-free procapsid (capsid I) packages bacteriophage T7 DNA during infection of Escherichia coli. It was shown here that capsid I, isolated by electrophoresis in metrizamide density gradients, packaged DNA and formed infectious phage particles when incubated in vitro with extracts deficient in capsid proteins.  相似文献   

4.
A survey of DNA packaging in vivo and in vitro during infections caused by T4 DNA-delay and DNA-arrest amber mutants revealed a common DNA packaging-deficient phenotype. Electron microscopy revealed high proportions of proheads partially filled with DNA in vivo, indicating normal initiation but incomplete encapsidation. In contrast, exogenous mature T4 DNA was packaged in vitro by several early-gene mutant extracts. Detailed analysis of gene ts39 mutants (subunit of topoisomerase II) showed that in vivo packaging is defective, yet expression of late proteins appeared normal and the concatemeric DNA was not abnormally short or nicked. Although g39 amber mutant extracts packaged DNA in vitro, two of three ts39 mutant extracts prevented encapsidation of the exogenous DNA. The temperature-sensitive (ts) gp39 in a mutant topoisomerase II complex may have interfered with packaging in vivo and in vitro by interacting with DNA in an anomalous fashion, rendering it unfit for encapsidation. These results support the hypothesis that T4 DNA packaging is sensitive to DNA structure and discriminates against encapsidation of some types of defective DNA.  相似文献   

5.
In Vitro Packaging of UV Radiation-Damaged DNA from Bacteriophage T7   总被引:11,自引:3,他引:8       下载免费PDF全文
When DNA from bacteriophage T7 is irradiated with UV light, the efficiency with which this DNA can be packaged in vitro to form viable phage particles is reduced. A comparison between irradiated DNA packaged in vitro and irradiated intact phage particles shows almost identical survival as a function of UV dose when Escherichia coli wild type or polA or uvrA mutants are used as the host. Although uvrA mutants perform less host cell reactivation, the polA strains are identical with wild type in their ability to support the growth of irradiated T7 phage or irradiated T7 DNA packaged in vitro into complete phage. An examination of in vitro repair performed by extracts of T7-infected E.coli suggests that T7 DNA polymerase may substitute for E. coli DNA polymerase I in the resynthesis step of excision repair. Also tested was the ability of a similar in vitro repair system that used extracts from uninfected cells to restore biological activity of irradiated DNA. When T7 DNA damaged by UV irradiation was treated with an endonuclease from Micrococcus luteus that is specific for pyrimidine dimers and then was incubated with an extract of uninfected E. coli capable of removing pyrimidine dimers and restoring the DNA of its original (whole genome size) molecular weight, this DNA showed a higher packaging efficiency than untreated DNA, thus demonstrating that the in vitro repair system partially restored the biological activity of UV-damaged DNA.  相似文献   

6.
In vitro packaging of bacteriophage T7 DNA requires ATP.   总被引:1,自引:1,他引:0       下载免费PDF全文
Removal of nucleoside triphosphates from extracts prepared from bacteriophage T7-infected Escherichia coli results in a stringent requirement for added ATP to form infective phage particles by in vitro packaging of bacteriophage T7 DNA. Optimal packaging efficiency was achieved at a concentration of about 1.25 mM. Other nucleoside triphosphates could be substituted for ATP, but none of the common nucleoside triphosphates was as effective as ATP in promoting in vitro encapsulation.  相似文献   

7.
M Sun  D Louie    P Serwer 《Biophysical journal》1999,77(3):1627-1637
Bacteriophage T7 packages its double-stranded DNA genome in a preformed protein capsid (procapsid). The DNA substrate for packaging is a head-to-tail multimer (concatemer) of the mature 40-kilobase pair genome. Mature genomes are cleaved from the concatemer during packaging. In the present study, fluorescence microscopy is used to observe T7 concatemeric DNA packaging at the level of a single (microscopic) event. Metabolism-dependent cleavage to form several fragments is observed when T7 concatemers are incubated in an extract of T7-infected Escherichia coli (in vitro). The following observations indicate that the fragment-producing metabolic event is DNA packaging: 1) most fragments have the hydrodynamic radius (R(H)) of bacteriophage particles (+/-3%) when R(H) is determined by analysis of Brownian motion; 2) the fragments also have the fluorescence intensity (I) of bacteriophage particles (+/-6%); 3) as a fragment forms, a progressive decrease occurs in both R(H) and I. The decrease in I follows a pattern expected for intracapsid steric restriction of 4',6-diamidino-2-phenylindole (DAPI) binding to packaged DNA. The observed in vitro packaging of a concatemer's genomes always occurs in a synchronized cluster. Therefore, the following hypothesis is proposed: the observed packaging of concatemer-associated T7 genomes is cooperative.  相似文献   

8.
Processing of concatemers of bacteriophage T7 DNA in vitro   总被引:3,自引:0,他引:3  
The T7 chromosome is a double-stranded linear DNA molecule flanked by direct terminal repeats or so-called terminal redundancies. Late in infection bacteriophage T7 DNA accumulates in the form of concatemers, molecules that are comprised of T7 chromosomes joined in a head to tail arrangement through shared terminal redundancies. To elucidate the molecular mechanisms of concatemer processing, we have developed extracts that process concatemeric DNA. The in vitro system consists of an extract of phage T7-infected cells that provides all T7 gene products and minimal levels of endogenous concatemeric DNA. Processing is analyzed using a linear 32P-labeled substrate containing the concatemeric joint. T7 gene products required for in vitro processing can be divided into two groups; one group is essential for concatemer processing, and the other is required for the production of full length left-hand ends. The products of genes 8 (prohead protein), 9 (scaffolding protein), and 19 (DNA maturation) along with gene 18 protein are essential, indicating that capsids are required for processing. In extracts lacking one or more of the products of genes 2 (Escherichia coli RNA polymerase inhibitor), 5 (DNA polymerase), and 6 (exonuclease), full length right-hand ends are produced. However, the left-hand ends produced are truncated, lacking at least 160 base pairs, the length of the terminal redundancy. Gene 3 endonuclease, required for concatemer processing in vivo, is not required in this system. Both the full length left- and right-hand ends produced by the processing reaction are protected from DNase I digestion, suggesting that processing of the concatemeric joint substrate is accompanied by packaging.  相似文献   

9.
An in vitro system based on extracts of Escherichia coli infected with bacteriophage T7 is able to repair double-strand breaks in a T7 genome with efficiencies of 20% or more. To achieve this high repair efficiency it is necessary that the reaction mixtures contain molecules of donor DNA that bracket the double-strand break. Gaps as long as 1,600 nucleotides are repaired almost as efficiently as simple double-strand breaks. DNA synthesis was measured while repair was taking place. It was found that the amount of DNA synthesis associated with repair of a double-strand break was below the level of detection possible with this system. Furthermore, repair efficiencies were the same with or without normal levels of T7 DNA polymerase. However, the repair required the 5'-->3' exonuclease encoded by T7 gene 6. The high efficiency of DNA repair allowed visualization of the repaired product after in vitro repair, thereby assuring that the repair took place in vitro rather than during an in vivo growth step after packaging.  相似文献   

10.
Abstract Infectious phage particles can be formed in vitro when extracts of T1-infected cells are incubated with T1 DNA. The DNA packaging system is based on mixtures of complementing extracts from Escherichia coli sup0 cells infected with the amber mutants am 4 (gene 16) or am 10 (gene 13). Gene 16 mutants are defective in the formation of DNA-filled heads but make proheads; gene 13 mutants are defective in prohead formation. Three forms of DNA have been packaged: (1) endogenous concatemeric DNA present in mixtures of am 4 and am 10 mutant extracts; (2) concatemeric DNA; (3) virion DNA both when supplied exogenously to mixtures of am 4 · am 20 and am 10 · am 20 double mutant extracts ( am 20 inhibits T1 DNA synthesis). The reaction requires added ATP, Mg2+ and spermidine for optimum efficiency and produces about 1.5 × 103 pfu/ μ g and about 1 × 104 pfu/ μ g for exogenous concatemeric and virion DNA, respectively.  相似文献   

11.
In vitro packaging of bacteriophage SPP1 DNA into procapsids is described and the requirements of this process were determined. Combination of proheads with an extract supplying terminase, DNA and phage tails yielded up to 10(7 )viable phages per milliliter of in vitro reaction under optimized conditions. The presence of neutral polymers and polyamines had a concentration and type dependent effect in the packaging reaction. The terminase donor extract lost rapidly activity at 30 degrees C in contrast to the stability of the prohead donor extract. Maturation to infective virions was observed using both procapsids assembled in SPP1 infected cells and procapsid-like structures assembled in Escherichia coli that overexpressed the SPP1 prohead gene clusters. Neither a majority of aberrant capsid-related structures present in the latter material nor procapsids lacking the portal protein inhibited DNA packaging. Addition of purified portal protein reduced DNA packaging activity in vitro only at concentrations 20-fold higher than those found in the SPP1 infected cell. The SPP1 DNA packaged in vitro originated exclusively from the terminase donor extract. This packaging selectivity was not observed in vivo during mixed infections. The data are compatible with a model for processive headful DNA packaging in which terminase and DNA co-produced in the same cell are tightly associated and can effectively discriminate the portal vertex of DNA packaging-proficient proheads from aberrant structures, from portal-less procapsids, and from isolated portal protein.  相似文献   

12.
M Son  S J Hayes  P Serwer 《Gene》1989,82(2):321-325
The in vitro DNA packaging of several DNA bacteriophages is stimulated by the presence of neutral polymers. To optimize bacteriophage T7 DNA packaging and to understand the basis for optimization, the efficiency of T7 DNA packaging has been determined at completion, as a function of the type, molecular mass, and concentration of the polymer added. When the polymer used was polyethylene glycol (PEG) of 0.2, 0.6 or 12.6 kDa, the efficiency of DNA packaging reached maximum at an intermediate concentration of polymer. The osmotic pressure (Pos) at maximum efficiency was either in, or close to, the range of colloid Pos measured for the intact host cell. The optimum Pos increased as the size of the polymer used decreased. PEG-100 (of 0.1 kDa) did not stimulate in vitro T7 DNA packaging. Dextran of 10 kDa also stimulated packaging and produced maximum efficiency at a physiological Pos. The degree of stimulation increases as DNA packaging extract concentration decreases; stimulation by as much as two to three orders of magnitude is observed. The presence of added polymer reduces fluctuations in DNA packaging efficiency caused by variability in the concentration of DNA packaging extracts. For reproducible and high efficiency packaging, the dextran was more reliable than the PEGs, possibly because the Pos of the dextran solutions is less sensitive to polymer concentration than is the Pos of PEG solutions. The optimum concentration of dextran at completion was also the optimum at all times before completion.  相似文献   

13.
We developed a system for DNA packaging of isolated bacteriophage T4 proheads in vitro and studied the role of prohead expansion in DNA packaging. Biologically active proheads have been purified from a number of packaging-deficient mutant extracts. The cleaved mature prohead is the active structural precursor for the DNA packaging reaction. Packaging of proheads requires ATP, Mg2+ and spermidine, and is stimulated by polyethylene glycol and dextran. Predominantly expanded proheads (ELPs) are produced at 37 degrees C and predominantly unexpanded proheads (ESPs) are produced at 20 degrees C. Both the expanded and unexpanded proheads are active in DNA packaging in vitro. This is based on the observations that (1) both ESPs and ELPs purified by chromatography on DEAE-Sephacel showed DNA packaging activity; (2) apparently homogeneous ELPs prepared by treatment with sodium dodecyl sulfate (which dissociates ESPs) retained significant biological activity; (3) specific precipitation of ELPs with anti-hoc immunoglobulin G resulted in loss of DNA packaging activity; and (4) ESPs upon expansion in vitro to ELPs retained packaging activity. Therefore, contrary to the models that couple DNA packaging to head expansion, in T4 the expansion and packaging appear to be independent, since the already expanded DNA-free proheads can be packaged in vitro. We therefore propose that the unexpanded to expanded prohead transition has evolved to stabilize the capsid and to reorganize the prohead shell functionally from a core-interacting to a DNA-interacting inner surface.  相似文献   

14.
Bacteriophage T7 DNA is a linear duplex molecule with a 160 base-pair direct repeat (terminal redundancy) at its ends. During replication, large DNA concatemers are formed, which are multimers of the T7 genome linked head to tail through recombination at the terminal redundancy. We define the sequence that results from this recombination, a mature right end joined to the left end of T7 DNA, as the concatemer junction. To study the processing and packaging of T7 concatemers into phage particles, we have cloned the T7 concatemer junction into a plasmid vector. This plasmid is efficiently (at least 15 particles/infected cell) packaged into transducing particles during a T7 infection. These transducing particles can be separated from T7 phage by sedimentation to equilibrium in CsCl. The packaged plasmid DNA is a linear concatemer of about 40 x 10(3) base-pairs with ends at the expected T7 DNA sequences. Thus, the T7 concatemer junction sequence on the plasmid is recognized for processing and packaging by the phage system. We have identified a T7 DNA replication origin near the right end of the T7 genome that is necessary for efficient plasmid packaging. The origin, which is associated with a T7 RNA polymerase promoter, causes amplification of the plasmid DNA during T7 infection. The amplified plasmid DNA sediments very rapidly and contains large concatemers, which are expected to be good substrates for the packaging reaction. When cloned in pBR322, a sequence containing only the mature right end of T7 DNA is sufficient for efficient packaging. Since this sequence does not contain DNA to the right of the site where a mature T7 right end is formed, it was expected that right ends would not form on this DNA. In fact, with this plasmid the right end does not form at the normal T7 sequence but is instead formed within the vector. Apparently, the T7 packaging system can also recognize a site in pBR322 DNA to produce an end for packaging. This site is not recognized solely by a "headful" mechanism, since there can be considerable variation in the amount of DNA packaged (32 x 10(3) to 42 x 10(3) base-pairs). Furthermore, deletion of this region from the vector DNA prevents packaging of the plasmid. The end that is formed in vector DNA is somewhat heterogeneous. About one-third of the ends are at a unique site (nucleotide 1712 of pBR322), which is followed by the sequence 5'-ATCTGT-3'. This sequence is also found adjacent to the cut made in a T7 DNA concatemer to produce a normal T7 right end.  相似文献   

15.
Genetic and physical analyses indicate that gene 18 protein of bacteriophage T7 is essential for packaging of T7 DNA. T7 DNA is replicated via linear intermediates, culminating in the formation of concatemers many genomes in length which are then packaged into capsids. In infections with phage carrying amber mutations in gene 18, development is blocked at the concatemer stage. Biochemical studies on the role of gene 18 protein in concatemer processing and DNA packaging have been hampered by its low level of expression of gene 18 during T7 infections. We have cloned gene 18 on a plasmid downstream from the bacteriophage lambda PL promoter controlled by the temperature-sensitive lambda repressor encoded by c 1857. Thermal induction leads to the expression of the 10,000-Da gene 18 protein to the extent of approximately 10% of the total protein after 2 h. The overexpressed gene 18 protein is susceptible to proteolytic degradation, a condition that can be alleviated by expression in an Escherichia coli strain carrying the lon100 deletion which reduces production of protease La. Extracts of induced cells will complement an extract of T7-infected cells lacking gene 18 protein for packaging of exogenous T7 DNA. The assay has been used to monitor the purification of gene 18 protein to essential homogeneity. The identity of the purified protein has been confirmed by sequencing of the N terminus. Gel filtration analysis suggests that the native protein is an octomer. Treatment of gene 18 protein with 3 M guanidine hydrochloride denatures it to a monomer. Removal of the denaturing agent by dialysis regenerates the octomeric structure and the ability to complement packaging extracts.  相似文献   

16.
Yu M  Masker W 《Journal of bacteriology》2001,183(6):1862-1869
An in vitro system based on Escherichia coli infected with bacteriophage T7 was used to test for involvement of host and phage recombination proteins in the repair of double strand breaks in the T7 genome. Double strand breaks were placed in a unique XhoI site located approximately 17% from the left end of the T7 genome. In one assay, repair of these breaks was followed by packaging DNA recovered from repair reactions and determining the yield of infective phage. In a second assay, the product of the reactions was visualized after electrophoresis to estimate the extent to which the double strand breaks had been closed. Earlier work demonstrated that in this system double strand break repair takes place via incorporation of a patch of DNA into a gap formed at the break site. In the present study, it was found that extracts prepared from uninfected E. coli were unable to repair broken T7 genomes in this in vitro system, thus implying that phage rather than host enzymes are the primary participants in the predominant repair mechanism. Extracts prepared from an E. coli recA mutant were as capable of double strand break repair as extracts from a wild-type host, arguing that the E. coli recombinase is not essential to the recombinational events required for double strand break repair. In T7 strand exchange during recombination is mediated by the combined action of the helicase encoded by gene 4 and the annealing function of the gene 2.5 single strand binding protein. Although a deficiency in the gene 2.5 protein blocked double strand break repair, a gene 4 deficiency had no effect. This argues that a strand transfer step is not required during recombinational repair of double strand breaks in T7 but that the ability of the gene 2.5 protein to facilitate annealing of complementary single strands of DNA is critical to repair of double strand breaks in T7.  相似文献   

17.
[目的]构建携带锚定序列的真核表达载体,研究T7噬菌体识别、包裹和转运真核表达载体进入细胞实现蛋白表达的可行性,为DNA疫苗研发建立新的技术平台.[方法]本研究通过重叠延伸PCR方法获得候选锚定序列并插入真核表达载体;建立荧光定量PCR方法比较T7噬菌体识别、包裹真核表达载体的效率;激光共聚焦显微镜观察T7噬菌体转运真...  相似文献   

18.
E Vincze  G B Kiss 《Gene》1990,96(1):17-22
It is shown here that the phosphate groups at the cos ends of phage lambda DNA are not a prerequisite for in vitro packaging. Molecules with phosphatase-treated cos ends are packaged in vitro as efficiently as native lambda DNA. This observation can be used for an alternative strategy to improve the efficiency of gene library construction, since cos-cos ligation decreases in vitro encapsidation and infectivity. Dephosphorylated cos ends and a new phasmid vector lambda pGY97 have been used to construct a representative gene bank of alfalfa in a Mcr- (5-methylcytosine restriction deficient) Escherichia coli host strain. These recombinant clones can be propagated as phages or more conveniently as plasmids in recA- E. coli, to prevent possible homologous recombination events between repetitive sequences of the insert that would otherwise interfere with clone stability. The 5-19-kb inserts can be easily recloned as plasmids from the recombinant phasmids with simple EcoRI digestion and re-ligation. This observation also implies that the construction of gene libraries in cosmid vectors can be made more efficient if cos-cos ligates were cleaved by lambda terminase just before in vitro packaging.  相似文献   

19.
The assembly of phage phi 29 occurs by a single pathway, and DNA-protein (DNA-gp3) has been shown to be an intermediate on the assembly pathway by a highly efficient in vitro complementation. At 30 degrees C, about one-half of the viral DNA synthesized was assembled into mature phage, and the absolute plating efficiency of phi 29 approached unity. DNA packaging at 45 degrees C was comparable to that at 30 degrees C, but the burst size was reduced by one-third. When cells infected with mutant ts3(132) at 30 degrees C to permit DNA synthesis were shifted to 45 degrees C before phage assembly, DNA synthesis ceased and no phage were produced. However, a variable amount of DNA packaging occurred. Superinfection by wild-type phage reinitiated ts3(132) DNA synthesis at 45 degrees C, and if native gp3 was covalently linked to this DNA during superinfection replication, it was effectively packaged and assembled. Treatment of the DNA-gp3 complex with trypsin prevented in vitro maturation of phi 29, although substantial DNA packaging occurred. A functional gp3 linked to the 5' termini of phi 29 DNA is a requirement for effective phage assembly in vivo and in vitro.  相似文献   

20.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号