首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When we investigate the bifurcation structure of models of natural phenomena, we usually assume that all model functions are mathematically specified and that the only existing uncertainty is with respect to the parameters of these functions. In this case, we can split the parameter space into domains corresponding to qualitatively similar dynamics, separated by bifurcation hypersurfaces. On the other hand, in the biological sciences, the exact shape of the model functions is often unknown, and only some qualitative properties of the functions can be specified: mathematically, we can consider that the unknown functions belong to a specific class of functions. However, the use of two different functions belonging to the same class can result in qualitatively different dynamical behaviour in the model and different types of bifurcation. In the literature, the conventional way to avoid such ambiguity is to narrow the class of unknown functions, which allows us to keep patterns of dynamical behaviour consistent for varying functions. The main shortcoming of this approach is that the restrictions on the model functions are often given by cumbersome expressions and are strictly model-dependent: biologically, they are meaningless. In this paper, we suggest a new framework (based on the ODE paradigm) which allows us to investigate deterministic biological models in which the mathematical formulation of some functions is unspecified except for some generic qualitative properties. We demonstrate that in such models, the conventional idea of revealing a concrete bifurcation structure becomes irrelevant: we can only describe bifurcations with a certain probability. We then propose a method to define the probability of a bifurcation taking place when there is uncertainty in the parameterisation in our model. As an illustrative example, we consider a generic predator–prey model where the use of different parameterisations of the logistic-type prey growth function can result in different dynamics in terms of the type of the Hopf bifurcation through which the coexistence equilibrium loses stability. Using this system, we demonstrate a framework for evaluating the probability of having a supercritical or subcritical Hopf bifurcation.  相似文献   

2.
Potassium channels play important roles in microglia functions and thus constitute potential targets for the treatment of neurodegenerative diseases like Alzheimer, Parkinson and stroke. However, uncertainty still prevails as to which potassium channels are expressed and at what levels in different species, how the expression pattern changes upon activation with M1 or M2 polarizing stimuli compared with more complex exposure paradigms, and - most importantly - how these findings relate to the in vivo situation. In this mini-review we discuss the functional potassium channel expression pattern in cultured neonatal mouse microglia in the light of data obtained previously from animal disease models and immunohistochemical studies and compare it with a recent study of adult human microglia isolated from epilepsy patients. Overall, microglial potassium channel expression is very plastic and possibly shows species differences and therefore should be studied carefully in each disease setting and respective animal models.  相似文献   

3.
There is evidence that the transient channel of temporal human vision behaves as a linear filter for small excursions around a steady background level. The linear filter characteristics depend on the background level. From experimentally obtained impulse responses of the transient channel the linear filter can be modelled and parametrized. This has been done for two different background levels. The two sets of estimated parameters at these two levels show a shift in the parameters which can be described by a single multiplication factor. This result was extrapolated to arbitrary background levels by postulating that each change in background level can be described by a multiplication factor. This leads to an assumption on the variation of the parameters of the linear filter of the transient channel with changes in the background level. This assumption is tested by simulating the system for different parameter sets of the linear filter. The simulations give a good agreement with experimental data on threshold-versus-duration curves and de Lange curves. The (minor) quantitative differences in simulations and experimental data can be explained.  相似文献   

4.
Activation and inactivation properties of Ca currents were investigated by studying the behavior of single Ca channels in snail neurons. The methods described in the previous paper were used. In addition, a zero- phase digital filter has been incorporated to improve the analysis of latencies to first opening, or waiting times. It was found that a decrease in the probability of single channel opening occurred with time. This was especially marked at 29 degrees C and paralleled the inactivation observed in macroscopic currents. The fact that a single channel was observed means that there is a significant amount of reopening from the "inactivated" state. Small depolarizations at 18 degrees C showed little inactivation. From these measurements, histograms of single channel open, closed, and waiting times were analyzed to estimate the rate constants of a three-state model of activation. Two serious discrepancies with the model were found. First, waiting time distributions at -20 mV were slower than those predicted by parameters obtained from an analysis of the single channel closed times. Second, it was shown that the time and the magnitude of the peak of the waiting time histogram were inconsistent with a three-state model. It is concluded that a minimum of four states are involved in activation. Some four-state models may be eliminated from further consideration. However, a comprehensive model of Ca channel kinetics must await further measurements.  相似文献   

5.
It is now generally accepted that the human visual system consists of subsystems (channels) that may be activated in parallel. According to some models of detection, detection is by probability summation among channels, while in other models it is assumed that detection is by a single channel that may even be tuned specifically to the stimulus pattern (detection by a matched filter). So far, arguments in particular for the hypothesis of probbbility summation are based on plausibility considerations and on demonstrations that the data from certain detection experiments are compatible with this hypothesis. In this paper it is shown that linear contrast interrelationship functions together with a property of a large class of distribution functions (strict log-concavity or logconvexity on the relevant set of contrasts/intensities) uniquely point to detection by a single channel. In particular, models of detection by probability summation based on Quick's Model are incompatible with linear contrast interrelationship functions. Sufficient (and observable) conditions for the strict logconcavity/log-convexity of distribution functions are presented.  相似文献   

6.
Multi-drug therapy is the standard-of-care treatment for tuberculosis. Despite this, virtually all studies of the pharmacodynamics (PD) of mycobacterial drugs employed for the design of treatment protocols are restricted to single agents. In this report, mathematical models and in vitro experiments with Mycobacterium marinum and five antimycobacterial drugs are used to quantitatively evaluate the pharmaco-, population and evolutionary dynamics of two-drug antimicrobial chemotherapy regimes. Time kill experiments with single and pairs of antibiotics are used to estimate the parameters and evaluate the fit of Hill-function-based PD models. While Hill functions provide excellent fits for the PD of each single antibiotic studied, rifampin, amikacin, clarithromycin, streptomycin and moxifloxacin, two-drug Hill functions with a unique interaction parameter cannot account for the PD of any of the 10 pairs of these drugs. If we assume two antibiotic-concentration dependent functions for the interaction parameter, one for sub-MIC and one for supra-MIC drug concentrations, the modified biphasic Hill function provides a reasonably good fit for the PD of all 10 pairs of antibiotics studied. Monte Carlo simulations of antibiotic treatment based on the experimentally-determined PD functions are used to evaluate the potential microbiological efficacy (rate of clearance) and evolutionary consequences (likelihood of generating multi-drug resistance) of these different drug combinations as well as their sensitivity to different forms of non-adherence to therapy. These two-drug treatment simulations predict varying outcomes for the different pairs of antibiotics with respect to the aforementioned measures of efficacy. In summary, Hill functions with biphasic drug-drug interaction terms provide accurate analogs for the PD of pairs of antibiotics and M. marinum. The models, experimental protocols and computer simulations used in this study can be applied to evaluate the potential microbiological and evolutionary efficacy of two-drug therapy for any bactericidal antibiotics and bacteria that can be cultured in vitro.  相似文献   

7.
A new method is presented for estimating the parameters of two different models of a joint. The two models are: (1) A rotational joint with a fixed axis of rotation, also referred to as a hinge joint and (2) a ball and socket model, corresponding to a spherical joint. Given the motion of a set of markers, it is shown how the parameters can be estimated, utilizing the whole data set. The parameters are estimated from motion data by minimizing two objective functions. The method does not assume a rigid body motion, but only that each marker rotates around the same fixed axis of rotation or center of rotation. Simulation results indicate that in situations where the rigid body assumption is valid and when measurement noise is present, the proposed method is inferior to methods that utilize the rigid body assumption. However, when there are large skin movement artefacts, simulation results show the proposed method to be more robust.  相似文献   

8.
When we construct mathematical models to represent biological systems, there is always uncertainty with regards to the model specification—whether with respect to the parameters or to the formulation of model functions. Sometimes choosing two different functions with close shapes in a model can result in substantially different model predictions: a phenomenon known in the literature as structural sensitivity, which is a significant obstacle to improving the predictive power of biological models. In this paper, we revisit the general definition of structural sensitivity, compare several more specific definitions and discuss their usefulness for the construction and analysis of biological models. Then we propose a general approach to reveal structural sensitivity with regards to certain system properties, which considers infinite-dimensional neighbourhoods of the model functions: a far more powerful technique than the conventional approach of varying parameters for a fixed functional form. In particular, we suggest a rigorous method to unearth sensitivity with respect to the local stability of systems’ equilibrium points. We present a method for specifying the neighbourhood of a general unknown function with \(n\) inflection points in terms of a finite number of local function properties, and provide a rigorous proof of its completeness. Using this powerful result, we implement our method to explore sensitivity in several well-known multicomponent ecological models and demonstrate the existence of structural sensitivity in these models. Finally, we argue that structural sensitivity is an important intrinsic property of biological models, and a direct consequence of the complexity of the underlying real systems.  相似文献   

9.
Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.  相似文献   

10.
Solomon JA 《Spatial Vision》2007,20(1-2):45-60
In the simplest form of signal-detection theory (SDT), all stimuli give rise to equal-variance Gaussian probability density functions (PDFs) of sensation, with means proportional to stimulus intensity. As this simple SDT cannot accurately describe psychometric functions for two-alternative forced-choice (2AFC) detection experiments, it is commonly modified in one of two ways: with a non-linear transducer or intrinsic uncertainty. Most results can adequately be explained by either modification, but Swets et al.'s (1961) two-response 4AFC (2R4AFC) detection experiment is an exception. Simple SDT cannot predict the relationship between first- and second-response accuracies and non-linear transduction does not help. A previously unacknowledged facet of intrinsic uncertainty is that the same uncertainty required to fit 2AFC psychometric functions also produces an excellent fit to Swets et al.'s 2R4AFC results, without requiring any additional assumptions. This result is derived within the context of a primer on SDT.  相似文献   

11.
Phylogenetic comparative methods use tree topology, branch lengths, and models of phenotypic change to take into account nonindependence in statistical analysis. However, these methods normally assume that trees and models are known without error. Approaches relying on evolutionary regimes also assume specific distributions of character states across a tree, which often result from ancestral state reconstructions that are subject to uncertainty. Several methods have been proposed to deal with some of these sources of uncertainty, but approaches accounting for all of them are less common. Here, we show how Bayesian statistics facilitates this task while relaxing the homogeneous rate assumption of the well-known phylogenetic generalized least squares (PGLS) framework. This Bayesian formulation allows uncertainty about phylogeny, evolutionary regimes, or other statistical parameters to be taken into account for studies as simple as testing for coevolution in two traits or as complex as testing whether bursts of phenotypic change are associated with evolutionary shifts in intertrait correlations. A mixture of validation approaches indicates that the approach has good inferential properties and predictive performance. We provide suggestions for implementation and show its usefulness by exploring the coevolution of ankle posture and forefoot proportions in Carnivora.  相似文献   

12.
Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker’s yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.  相似文献   

13.
This paper concentrates on the state observation in bioprocesses when there is uncertainty on the process parameters and/or the process inputs. An interval observer is designed on the basis of the cooperativity properties of the model for a standard stirred tank bioreactor model with a single microbial growth and a kinetic model depending on the substrate concentration. Further assumptions are the (lower and upper) boundedness of the specific growth rate and the inlet substrate concentration. Mathematical analysis of the stability and convergence of the interval observer is performed both in absence and in presence of uncertainty on the measurements. It is shown in particular that when the process inputs are known, the static observation error on the unknown state is inversely proportional to one of the observer gains. The performance of the interval observer are also illustrated through numerical simulation.  相似文献   

14.
Markovian models of ion channels have proven useful in the reconstruction of experimental data and prediction of cellular electrophysiology. We present the stochastic Galerkin method as an alternative to Monte Carlo and other stochastic methods for assessing the impact of uncertain rate coefficients on the predictions of Markovian ion channel models. We extend and study two different ion channel models: a simple model with only a single open and a closed state and a detailed model of the cardiac rapidly activating delayed rectifier potassium current. We demonstrate the efficacy of stochastic Galerkin methods for computing solutions to systems with random model parameters. Our studies illustrate the characteristic changes in distributions of state transitions and electrical currents through ion channels due to random rate coefficients. Furthermore, the studies indicate the applicability of the stochastic Galerkin technique for uncertainty and sensitivity analysis of bio-mathematical models.  相似文献   

15.
Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an "H-noise" algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.  相似文献   

16.
We present a general theoretical framework, incorporating both aggregation of states into classes and time interval omission, for stochastic modeling of the dynamic aspects of single channel behavior. Our semi-Markov models subsume the standard continuous-time Markov models, diffusion models and fractal models. In particular our models allow for quite general distributions of state sojourn times and arbitrary correlations between successive sojourn times. Another key feature is the invariance of our framework with respect to time interval omission: that is, properties of the aggregated process incorporating time interval omission can be derived directly from corresponding properties of the process without it. Even in the special case when the underlying process is Markov, this leads to considerable clarification of the effects of time interval omission. Among the properties considered are equilibrium behavior, sojourn time distributions and their moments, and auto-correlation and cross-correlation functions. The theory is motivated by ion channel mechanisms drawn from the literature, and illustrated by numerical examples based on these.  相似文献   

17.
Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.  相似文献   

18.
Structure-function studies have shown that it is possible to convert a sodium channel to a calcium-selective channel by a single amino acid substitution in the selectivity filter locus. Ion permeation through the "model selectivity filter" was modeled with a reduced set of functional groups representative of the constituent amino acid side chains. Force-field minimizations were conducted to obtain the energy profile of the cations as they get desolvated and bind to the "model selectivity filter." The calculations suggest that the ion selectivity in the calcium channel is due to preferential binding, whereas in the sodium channel it is due to exclusion. Energetics of displacement of a bound cation from the calcium "model selectivity filter" by another cation suggest that "multi-ion mechanism" reduces the activation barrier for ion permeation. Thus, the simple model captures qualitatively most of the conduction characteristics of sodium and calcium channels. However, the computed barriers for permeation are fairly large, suggesting that ion interaction with additional residues along the transport path may be essential to effect desolvation.  相似文献   

19.
The four-state simple carrier model (SCM) is employed to describe ligand translocation by diverse passive membrane transporters. However, its application to systems like facilitative sugar transporters (GLUTs) is controversial: unidirectional fluxes under zero-trans and equilibrium-exchange experimental conditions fit a SCM, but flux data from infinite-cis and infinite-trans experiments appear not to fit the same SCM. More complex kinetic models have been proposed to explain this ``anomalous' behavior of GLUTs, but none of them accounts for all the experimental findings. We propose an alternative model in which GLUTs are channels subject to conformational transitions, and further assume that the results from zero-trans and equilibrium-exchange experiments as well as trans-effects corresponds to a single-occupancy channel regime, whereas the results from the infinite-cis and infinite-trans experiments correspond to a regime including higher channel occupancies. We test the plausibility of this hypothesis by studying a kinetic model of a two-site channel with two conformational states. In each state, the channel can bind the ligand from only one of the compartments. Under single-occupancy, for conditions corresponding to zero-trans and equilibrium-exchange experiments, the model behaves as a SCM capable of exhibiting trans-stimulations. For a regime including higher degrees of occupancy and infinite-cis and infinite-trans conditions, the same channel model can exhibit a behavior qualitatively similar to a SCM, albeit with kinetic parameters different from those for the single-occupancy regime. Numerical results obtained with our model are consistent with available experimental data on facilitative glucose transport across erythrocyte membranes. Hence, if GLUTs are multiconformational channels, their particular kinetic properties can result from transitions between single and double channel occupancies. Received: 12 April 1995/Revised: 28 August 1995  相似文献   

20.
J Wu 《Biophysical journal》1991,60(1):238-251
Ionic permeation in the selectivity filter of ion channels is analyzed by a microscopic model based on molecular kinetic theory. The energy and flux equations are derived by assuming that: (a) the selectivity filter is formed by a symmetrical array of carbonyl groups; (b) ion movement is near the axis of the channel; (c) a fraction of water molecules is separated from the ion while it moves across the selectivity filter; (d) the applied voltage drops linearly across the selectivity filter; (e) ions move independently. Energy profiles, single channel conductances, and the degree of hydration of K+ in a hypothetical K+ channel are examined by varying the following microscopic parameters: ion radius and mass, channel radius, number of effective water dipoles, and number of carbonyl groups. The i-V curve is linear up to +/- 170 mV. If the positions of energy maxima and minima are fixed, this linear range is reduced to +/- 50 mV. Channel radius and ion-water interactions are found to be two major channel structural determinants for selectivity sequences. Both radius and mass of an ion are important in selectivity mediated by these interactions. The theory predicts a total of 15 possible kinetic selectivity sequences for alkali cations in ion channels with a single selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号