首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insertions of the yeast element Ty3 resulting from induced retrotransposition were characterized in order to identify the genomic targets of transposition. The DNA sequences of the junctions between Ty3 and flanking DNA were determined for two insertions of an unmarked element. Each insertion was at position -17 from the 5' end of a tRNA-coding sequence. Ninety-one independent insertions of a marked Ty3 element were studied by Southern blot analysis. Pairs of independent insertions into seven genomic loci accounted for 14 of these insertions. The DNA sequence flanking the insertion site was determined for at least one member of each pair of integrated elements. In each case, insertion was at position -16 or -17 relative to the 5' end of one of seven different tRNA genes. This proportion of genomic loci used twice for Ty3 integration is consistent with that predicted by a Poisson distribution for a number of genomic targets roughly equivalent to the estimated number of yeast tRNA genes. In addition, insertions upstream of the same tRNA gene in one case were at different positions, but in all cases were in the same orientation. Thus, genomic insertions of Ty3 in a particular orientation are apparently specified by the target, while the actual position of the insertion relative to the tRNA-coding sequence can vary slightly.  相似文献   

3.
The mutation rate to antimycin A resistance was determined for strains of Sacchromyces cerevisiae lacking a functional copy of the structural gene for alcohol dehydrogenase I (ADH1). One type of mutation that can cause antimycin A resistance in these strains is insertion of the transposable element Ty 5' to ADH2, the structural gene for the glucose-repressed isozyme of alcohol dehydrogenase, resulting in expression of this gene during growth on glucose. Here we show that after growth at 15 or 20 degrees C on glucose, 30% of the antimycin A resistance mutations are Ty insertions at ADH2 and another 65% of the mutations are Ty insertions at ADH4, a new locus identified and cloned as described in this paper. At 30 degrees C only 6% of the mutations are Ty insertions at either of these two loci. In addition, we show that the transposition rate is lower in mating-incompetent (a/alpha) cells than in either haploid or diploid mating-competent cells. Our results suggest that under certain conditions Ty transposition may be a major cause of spontaneous mutations in S. cerevisiae.  相似文献   

4.
5.
Mutations caused by the insertion of a Ty element resulting in an antimycin-A-resistant phenotype in an adh1- strain of Saccharomyces cerevisiae were used as an assay for the quantitative detection of Ty transposition. Antimycin-A-resistant mutants were found to be inducible by ethyl methanesulfonate (EMS) as well as by gamma- and UV irradiation. DNA analysis of gamma-induced mutants showed an increase of the fraction of Ty insertions in the ADH2 locus with increasing dose.  相似文献   

6.
V. Lauermann  M. Hermankova    J. D. Boeke 《Genetics》1997,145(4):911-922
The Ty1 retrotransposon of Saccharomyces cerevisiae is bounded by long-terminal repeats (LTRs). We have constructed a variety of Ty1 elements in which the LTR length has been increased from the normal length of 334 bp to >2 kb. Although small insertions in the LTR have minimal effects on transposition frequency, larger insertions dramatically reduce it. Nevertheless, elements with long LTRs are incorporated into the genome at a low frequency. Most of these rare insertion events represent Ty1 tandem (head to tail) multimers.  相似文献   

7.
Saccharomyces cerevisiae Ty elements are transposons closely related to retroviruses. The DNA sequence of a functional Ty element (TyH3) is presented. The long terminal repeat sequences are different, suggesting that TyH3 is a recombinant Ty element. A chromosomal Ty element near the LYS2 gene, Ty173, was found to be nonfunctional, even though it has no detectable insertions or deletions. The defect in Ty173 transposition is caused by a missense mutation giving rise to a Leu-to-Ile substitution in the TYB (pol) open reading frame. Several chromosomal Ty elements carry this lesion in their DNA, indicating that nonfunctional Ty elements are common in the yeast genome.  相似文献   

8.
9.
Forty-nine Tn3 and Tn5 transposition insertion mutations were introduced into the virulence region of the pTiA6NC plasmid of Agrobacterium tumefaciens. Five Tn5 transposition mutations from an earlier study (D. Garfinkel and E. Nester, J. Bacteriol. 144:732-743, 1980) were also mapped more accurately. These mutations defined five separate loci within the virulence region. Two Tn3 insertions into one of these loci, virA, result in a strain which is only weakly virulent; however, a Tn5 insertion into this locus eliminates virulence. One Tn5 insertion into another locus, virC, results in a strain which is weakly virulent. Two additional Tn5 insertions into this locus eliminate virulence. Insertions into the remaining three loci eliminate virulence entirely.  相似文献   

10.
In this paper, we describe the movement of a genetically marked Saccharomyces cerevisiae transposon. Ty912(URA3), to new sites in the S. cerevisiae genome. Ty912 is an element present at the HIS4 locus in the his4-912 mutant. To detect movement of Ty912, this element has been genetically marked with the S. cerevisiae URA3 gene. Movement of Ty912(URA3) occurs by recombination between the marked element and homologous Ty elements elsewhere in the S. cerevisiae genome. Ty912(URA3) recombines most often with elements near the HIS4 locus on chromosome III, less often with Ty elements elsewhere on chromosome III, and least often with Ty elements on other chromosomes. These recombination events result in changes in the number of Ty elements present in the cell and in duplications and deletions of unique sequence DNA.  相似文献   

11.
In order to identify and characterize sequences within Ty1 elements which are required in cis for transposition, a series of mini-Ty1 plasmids were constructed and tested for transposition. Mini-Ty1s are deletion mutants of the Ty1-H3 element; Ty1 gene products required for transposition are supplied in trans from a helper Ty1 which has intact open reading frames but lacks a 3' long terminal repeat (LTR) and therefore cannot transpose itself. Up to 5 kilobase pairs of internal sequences of the 6-kilobase-pair-long Ty1 element can be deleted without a significant effect on transposition. The smallest mini-Ty1 element capable of transposition contains the 3' LTR and the transcribed portion of the 5' LTR, 285 base pairs (bp) of internal sequence 3' to the 5' LTR, and 23 bp of internal sequence 5' to the 3' LTR. We conclude that Ty1-encoded proteins can act in trans and that cis-acting sequences in Ty1-H3 are all within or near the LTRs. Further deletion of the 285-bp internal sequence adjacent to the 5' LTR significantly reduced transposition frequency, and the mini-Ty1 RNA produced failed to be packaged into the viruslike particles efficiently. Surprisingly, several nonhomologous cellular mRNAs were also associated with viruslike particles.  相似文献   

12.
S. W. Liebman  G. Newnam 《Genetics》1993,133(3):499-508
A galactose-inducible Ty1 element was used to generate 59 independent Ty1 inserts that inactivate the CAN1 gene. As found in previous studies, the distribution of these elements shows a gradient of insertion frequency from highest to lowest between the 5' and 3' ends of the gene. However, 53 independent Ty1 and Ty2 insertions isolated by an identical procedure in an isogenic rad6 deletion strain do not show this bias. In this strain, the Ty elements insert randomly throughout CAN1. These results show that the ubiquitin-conjugating enzyme, RAD6, alters the integration site preferences of Ty1 retrotransposons.  相似文献   

13.
Transposon Tagging Using Ty Elements in Yeast   总被引:16,自引:4,他引:12       下载免费PDF全文
We have used the ability to induce high levels of Ty transposition to develop a method for transposon mutagenesis in Saccharomyces cerevisiae. To facilitate genetic and molecular analysis, we have constructed GAL1-promoted TyH3 or Ty917 elements that contain unique cloning sites, and marked these elements with selectable genes. These genes include the yeast HIS3 gene, and the plasmid PiAN7 containing the Tn903 NEO gene. The marked Ty elements retain their ability to transpose, to mutate the LYS2, LYS5, or STE2 genes, and to activate the promoterless his3 delta 4 target gene. Ty elements containing selectable genes are also useful in strain construction, in chromosomal mapping, and in gene cloning strategies.  相似文献   

14.
The Saccharomyces cerevisiae DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme which polyubiquitinates histones in vitro. Here we show that mutations in rad6 increase the frequency of transposition of the retrotransposon Ty into the CAN1 and URA3 loci. Using isogenic RAD6 and rad6 strains, we measured a more than 100-fold increase in the spontaneous rate of retrotransposition due to rad6, although there was no increase in the Ty message level. This is the first time that a mutation in a host gene has been shown to result in an increased rate of retrotransposition.  相似文献   

15.
16.
D T Scholes  M Banerjee  B Bowen  M J Curcio 《Genetics》2001,159(4):1449-1465
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.  相似文献   

17.
The yeast Saccharomyces cerevisiae has about 30 to 50 copies of a transposable element Ty. Most of these elements are located at the 5' ends of protein coding sequences and are flanked by a 5 bp duplication. We report below an insertion of a Ty element into one of the repeated ribosomal RNA (rRNA) genes of yeast. The element is located between the 3' ends of the divergentally transcribed 37S and 5S rRNA's and is not flanked by a 5 bp duplication. In addition, one end of the Ty insertion is contiguous with a 306 bp deletion of the sequences of the rRNA gene. We find that this insertion, unlike most Ty insertions, is mitotically unstable.  相似文献   

18.
Haploid yeast cells contain approximately 35 Ty (transposon yeast) elements. To facilitate the study of these elements, we have constructed yeast strains in which one of these transposons carries a genetic marker. The elements that we have modified are Ty912 and Ty917, elements originally detected at the HIS4 locus in spontaneously occurring his4- mutants. The strain constructions took place in three stages: 1) cloning of the mutant HIS4 genes containing the Ty elements; 2) introduction of a HindIII restriction fragment containing the yeast URA3 gene into the cloned transposons; and 3) replacement of the chromosomal HIS4 gene with the modified genes constructed in vitro. These strains will be extremely useful in the study of Ty transposition and other Ty-promoted DNA rearrangements.  相似文献   

19.
Multimeric arrays of the yeast retrotransposon Ty.   总被引:8,自引:3,他引:5       下载免费PDF全文
We have identified a novel integrated form of the yeast retrotransposon Ty consisting of multiple elements joined into large arrays. These arrays were first identified among Ty-induced alpha-pheromone-resistant mutants of MATa cells of Saccharomyces cerevisiae which contain Ty insertions at HML alpha that result in the expression of that normally silent cassette. These insertions are multimeric arrays of both the induced genetically marked Ty element and unmarked Ty elements. Structural analysis of the mutations indicated that the arrays include tandem direct repeats of Ty elements separated by only a single long terminal repeat. The Ty-HML junction fragments of one mutant were cloned and shown to contain a 5-base-pair duplication of the target sequence that is characteristic of a Ty transpositional insertion. In addition, the arrays include rearranged Ty elements that do not have normal long terminal repeat junctions. We have also identified multimeric Ty insertions at other chromosomal sites and as insertions that allow expression of a promoterless his3 gene on a plasmid. The results suggest that Ty transposition includes an intermediate that can undergo recombination to produce multimers.  相似文献   

20.
The retrotransposon Ty1 of Saccharomyces cerevisiae inserts preferentially into intergenic regions in the vicinity of RNA polymerase III-transcribed genes. It has been suggested that this preference has evolved to minimize the deleterious effects of element transposition on the host genome, and thus to favor their evolutionary survival. This presupposes that such insertions have no selective effect. However, there has been no direct test of this hypothesis. Here we construct a series of strains containing single Ty1 insertions in the vicinity of tRNA genes, or in the rDNA cluster on chromosome XII, which are otherwise isogenic to strain 337, containing zero Ty1 elements. Competition experiments between 337 and the strains containing single Ty1 insertions revealed that in all cases, the Ty1 insertions have no selective effect in rich medium. These results are thus consistent with the hypothesis that the insertion site preference of Ty1 elements has evolved to minimize the deleterious effects of transposition on the host genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号