首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium verticillioides is the most important seed transmitted pathogen that infects maize. It produces fumonisins, toxins that have potential toxicity for humans and animals. Control of F. verticillioides colonisation and systemic contamination of maize has become a priority area in food safety research. The aims of this research were (1) to characterise the maize endorhizosphere and rhizoplane inhabitant bacteria and Fusarium spp., (2) to select bacterial strains with impact on F. verticillioides growth and fumonisin B1 production in vitro, (3) to examine the effects of bacterial inoculum levels on F. verticillioides root colonisation under greenhouse conditions. Arthrobacter spp. and Azotobacter spp. were the predominant genera isolated from maize endorhizosphere and rhizoplane at the first sampling period, whilst F. verticillioides strains showed the greatest counts at the same isolation period. All F. verticillioides strains were able to produce fumonisin B1 in maize cultures. Arthrobacter globiformis RC5 and Azotobacter armeniacus RC2, used alone or in a mix, demonstrated important effects on F. verticillioides growth and fumonisin B1 suppression in vitro. Only Azotobacter armeniacus RC2 significantly reduced the F. verticillioides root colonisation at 106 and 107 CFU g–1 levels under greenhouse conditions.  相似文献   

2.
Fusarium proliferatum, F. subglutinans, and F. verticillioides are known causes of ear and kernel rot in maize worldwide. In Mexico, only F. verticillioides and F. subglutinans, have been reported previously as causal agents of this disease. However, Fusarium isolates with different morphological characteristics to the species that are known to cause this disease were obtained in the Highland-Valley region of this country from symptomatic and symptomless ears of native and commercial maize genotypes. Moreover, while the morphological studies were not sufficient to identify the correct taxonomic position at the species level, analyses based in the Internal Transcribed Spacer region and the Nuclear Large Subunit Ribosomal partial sequences allowed for the identification of F. subglutinans, F. solani, and F. verticillioides, as well as four species (F. chlamydosporum, F. napiforme, F. poae, and F. pseudonygamai) that had not previously been reported to be associated with ear rot. In addition, F. napiforme and F. solani were absent from symptomless kernels. Phylogenetic analysis showed genetic changes in F. napiforme, and F. pseudonygamai isolates because they were not true clones, and probably constitute separate sibling species. The results of this study suggest that the biodiversity of Fusarium species involved in ear rot in Mexico is greater than that reported previously in other places in the world. This new knowledge will permit a better understanding of the relationship between all the species involved in ear rot disease and their relationship with maize.  相似文献   

3.
Biological control represent an alternative to the use of pesticides in crop protection. A key to progress in biological control to protect maize against Fusarium verticillioides and Aspergillus flavus maize pathogens are, to select in vitro, the best agent to be applied in the field. The aim of this study was to examine the antagonistic activity of bacterial and yeast isolates against F.verticillioides and A. flavus toxigenic strains. The first study showed the impact of Bacillus amyloliquefaciens BA-S13, Microbacterium oleovorans DMS 16091, Enterobacter hormomaechei EM-562T, and Kluyveromyces spp. L14 and L16 isolates on mycelial growth of two strains of A. flavus MPVPA 2092, 2094 and three strains of F. verticillioides MPVPA 285, 289, and 294 on 3% maize meal extract agar at different water activities (0.99, 0.97, 0.95, and 0.93). From this first assay antagonistics isolates M. oleovorans, B. amyloliquefaciens and Kluyveromyces sp. (L16) produced an increase of lag phase of growth and decreased a growth rate of all fungal strains. These isolates were selected for futher studies. In vitro non-rhizospheric maize soil (centrally and sprayed inoculated) and in vitro maize (ears apex and base inoculated) were treated with antagonistics and pathogenic strains alone in co-inoculated cultures. Bacillus amyloliquefaciens significantly reduced F. verticillioides and A. flavus count in maize soil inoculated centrally. Kluyveromyces sp. L16 reduced F. verticillioides and A. flavus count in maize soil inoculated by spray. Kluyveromyces sp. L16 was the most effective treatment limiting percent infections by F. verticillioides on the maize ears.  相似文献   

4.
Ayurvedic medicine, which uses decoctions made of medicinal plants, is used to cure diseases in many Asian countries including Sri Lanka. Although proper storage facilities for medicinal plants are unavailable in Sri Lanka, neither the potential for growth of toxigenic fungi nor their ability to produce mycotoxins in stored medicinal plants has been investigated. We isolated three Fusarium species, F. culmorum, F. acuminatum and F. graminearum from the medicinal plant Tribulus terrestris. Culture extracts of the 3 Fusarium spp. were cytotoxic to mammalian cell lines BHK-21 and HEP-2. Three toxic metabolites produced by Fusarium spp; T-2 toxin, zearalenone, and diacetoxyscirpenol were also cytotoxic to the same mammalian cell lines. The 3 Fusarium spp. grown on rice media produced zearalenone. Plant material destined for medicinal use should be stored under suitable conditions to prevent growth of naturally occurring toxigenic fungi prior to its use.  相似文献   

5.
The gibberellins are one of the major groups of growth promoting hormones and are secondary metabolites of the fungus Fusarium moniliforme (Perfect stage: Gibberella fujikuroi). Sixteen strains of Fusarium from different geographical regions and different hosts were analysed for their ability to produce gibberellins (GA) and for genetic relatedness by random amplified polymorphic DNA (RAPD). Range of gibberellin production varied between 28.9 to 600.0 mg g-1 dry weight of mycelium in different strains of Fusarium. RAPD analysis showed completely different pattern between high, moderate and low producing strains. High producers formed nearly identical RAPD patterns, whereas the low and moderate producers gave heterologous amplification patterns. Since Fusarium pallidoroseum was in another group, it was possible to distinguish between different species of the genus Fusarium by RAPD. These investigations may find an application in the diagnosis of unknown Fusarium species and in distinguishing isolates of Gibberella fujikuroi within the section of Liseola. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Fusarium verticillioides and other Fusarium species were examined for their spore germination phenotypes. In general, germinating spores of F. verticillioides formed germ tubes that immediately penetrated into agar. Such invasive germination was the predominant growth phenotype among 22 examined field isolates of F. verticillioides from a broad range hosts and locations. However, two of the field isolates were unique in that they formed conidial germ tubes and hyphae that grew along the surface of agar before penetration eventually occurred. Conidia of 22 other Fusarium species were assessed for their germination phenotypes, and only some strains of F. annulatum, F. fujikuroi, F. globosum, F. nygamai, and F. pseudoanthophilum had the surface germination phenotype (21 % of the strains assessed). Sexual crosses and segregation analyses involving one of the F. verticillioides surface germination strains, NRRL 25059, indicated a single locus, designated SIG1 (surface vs. invasive germination), controlled the germ tube growth phenotypes exhibited by both conidia and ascospores. Perfect correlation was observed between an ascospore germination phenotype and the germination phenotype of the conidia produced from the resulting ascospore-derived colony. Recombination data suggested SIG1 was linked (7 % recombination frequency) to FPH1, a recently described locus necessary for enteroblastic conidiogenesis. Corn seedling blight assays indicated surface germinating strains of F. verticillioides were less virulent than invasively germinating strains. Assays also indicated pathogenicity segregated independently of the FPH1 locus. Invasive germination is proposed as the dominant form of spore germination among Fusarium species. Furthermore, conidia were not necessary for corn seedling disease development, but invasive germination may have enhanced the virulence of conidiating strains.  相似文献   

7.
8.
Fusarium species belonging to the Fusarium fujikuroi species complex (FFSC) are associated with maize in northern Mexico and cause Fusarium ear and root rot. In order to assess the diversity of FFSC fungal species involved in this destructive disease in Sinaloa, Mexico, a collection of 108 fungal isolates was obtained from maize plants in 2007–2011. DNA sequence analysis of the calmodulin and elongation factor 1α genes identified four species: Fusarium verticillioides, F. nygamai, F. andiyazi and F. thapsinum (comprising 79, 23, 4 and 2 isolates, respectively). Differential distribution of Fusarium species in maize organs was observed, that is F. verticillioides was the most frequently isolated species from maize seeds, while F. nygamai predominated on maize roots. Mixed infections with F. verticillioides/F. thapsinum and F. verticillioides/F. nygamai were detected in maize seeds and roots, respectively. Pathogenicity assay demonstrated the ability of the four species to infect maize seedlings and induce different levels of disease severity, reflecting variation in aggressiveness, plant height and root biomass. Isolates of F. verticillioides and F. nygamai were the most aggressive. These species were able to colonize all root tissues, from the epidermis to the vascular vessels, while infection by F. andiyazi and F. thapsinum was restricted to the epidermis and adjacent cortical cells. This is the first report of F. nygamai, F. andiyazi and F. thapsinum infecting maize in Mexico and co‐infecting with F. verticillioides. Mixed infections should be taken into consideration due to the production and/or accumulation of diverse mycotoxins in maize grain.  相似文献   

9.
A total of 57 samples of feedstuffs commonly used for animal nutrition in Colombia (corn, soybean, sorghum, cottonseed meal, sunflower seed meal, wheat middlings and rice) were analyzed for Fusarium contamination. Fusarium fungi were identified at species level by means of conventional methods and the ability to produce fumonisins of the most prevailing species was determined. A total of 41 of the feedstuffs analyzed (71.9%) were found to contain Fusarium spp. Most contaminated substrates were corn (100%), cottonseed meal (100%), sorghum (80%), and soybean (80%). Wheat middlings and rice showed lower levels of contamination (40% and 20%, respectively), while no Fusarium spp. could be isolated from sunflower seed meal. The most prevalent species of Fusarium isolated were F. verticilliodes (70.8%), F.␣proliferatum (25.0%), and F. subglutinans (4.2%). All of them correspond to section Liseola.Production of fumonisins on corn by the isolated Fusarium was screened through liquid chromatography. Almost all strains of F. verticilliodes (97.1%) produced FB1 (5.6–25,846.4 mg/kg) and FB2 (3.4–7507.5 mg/kg). Similarly, almost all strains of F.␣proliferatum (91.7%) produced fumonisins but at lower levels than F.␣verticilliodes (FB1 from 6.9 to 3885.0 mg/kg, and FB2 from 34.3 to 373.8 mg/kg), while F. subglutinans did not produce these toxins. This is the first study in Colombia describing toxigenic Fusarium isolates from␣animal feedstuffs.  相似文献   

10.
Endophytic fungi were isolated from healthy, living, and symptomless tissues of inner bark, leaf, and roots of Aegle marmelos, a well-known medicinal plant, growing in different parts of India including Varanasi. A total of 79 isolates of endophytic fungi were isolated, representing 21 genera, adopting a standard isolation protocol. Members of the deuteromycotina were more prevalent than ascomycotina and others. The result was quite encouraging in terms of maximum isolates recovery from hyphomycetes (78.5%) followed by ascomycetes (8.9%) and coelomycetes (7.6%) respectively, which corroborates previous studies in same area. However, 5.1% isolates remained unidentified and were classified under Mycelia Sterilia. No isolate was obtained from either basidiomycotina or from zygomycotina. Fusarium spp. had maximum colonization frequency (8.00%) in this plant. The other dominant endophytic genera were Aspergillus spp., Alternaria sp., Drechslera sp., Rhizoctonia sp., Curvularia sp., Nigrospora sp., and Stenella sp. Only two ascomycetous members Chaetomium globosum and Emericella sp. (perfect state of Aspergillus sp.) were obtained from the bark sample. These results indicated that distribution of endophytic fungi within the A. marmelos is not even. Bark harbors more endophytic fungi than leaf and root.  相似文献   

11.
Maize samples were collected from nine Grain Marketing Board (G.M.B) centers in Zimbabwe during the 1991 harvest season. A further 47 samples collected directly from farmers and from the G.M.B., centers in Chinhoyi and Kwekwe during the 1992 harvest season. These samples were analyzed mycologically and the predominant flora was Fusarium although Penicillium, Nigrospora, Aspergillus and Chaetomium could be isolated from some samples. From the first nine samples studied, F. verticillioides and F. subglutinans were isolated in almost equal proportions on samples from the central and the south of the country whereas only F. verticillioides was isolated on the samples from the north. The subsequent study demonstrated that there was a greater fungal diversity in samples from North (Mashonaland West) than samples from the South (Midlands area) with species of Nigrospora, Chaetomium, Acremonium and Diplodia occurring in significant numbers. From a total of 2821 fungal isolates obtained from all the maize samples analyzed, 1485 (53%) were found to belong to the liseola section of Fusarium. The ability of these isolates to produce the mycotoxins zearalenone, moniliformin and fumonisin B1 was tested using a simplified TLC Agar plate method. Out of the 886 isolates tested, only one produced all the three mycotoxins simultaneously whilst most produced fumonisin B1 and/or moniliformin. Only nine isolates produced zearalenone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Abstract

A total of 106 Fusarium spp. were isolated from infected roots and soil samples of wheat and rice. Of the 106 isolates, 32 from wheat, and 74 from rice, were isolated. Six Fusarium spp. (F. oxysporum, F. moniliforme, F. poae, F. graminearum, F. tricinctum and F. equiseti) were identified at specie level. In aggressiveness tests Fusarium spp. root rot causing fungi were screened out into different aggressiveness classes according to disease severity scales. The aggressiveness of Fusarium spp. was studied on wheat varieties (Inqalab-91 and chakwal-86) and on rice varieties (Basmati-385 and IRRI-6) under controlled conditions. The overall total number of aggressive isolates was higher in rice than in wheat. However, the percentage of severely aggressive isolates was high in wheat, whereas the percentage of moderately and slightly aggressiveness isolates was high in rice. In rice, five isolates were non-aggressive and on wheat 17 were non-aggressive. Random Amplified Polymorphism DNAs (RAPDs) were used to study the polymorphism and genetic variations within the population of Fusarium spp. that established to study correlation between taxonomical and genetical characters of fungi. Five random primers were used P1 (5′-AGGAGGACCC-3′), P2 (5′-ACGAGGGACT-3′), PE7 (5′-AGATGCAGCC-3′), P14 (5′-CCACAGCACG-3′) and PE20 (5′-AACGGTGACC-3′). Each of the 10-mer primers produced results based on the respective banding patterns they generated in present investigations. Primers distinguished the F. oxysporum, F. moniliforme, F. graminearum, F. tricinctum, F. poa and F. equiseti. All the tested primers yielded amplification products, and that were reproducible. Although there was some intraspecific variation with primers, some strains were similar and some were different in banding pattern. In F. oxysporum, F. moniliforme, F. graminearum, F. tricinctum, F. poa and F. equiseti were seen clustered close to one another but each primer separated them unambiguously. All primer (P1, P2, P14, PE7 and PE20) combination produced 62 bands. All primers have shown interspecific and intraspecific variations in banding patterns.  相似文献   

13.
This study was designed to identify and compare the Fusarium species of the Gibberella fujikuroi complex on pearl millet (Pennisetum glaucum (L.) R. Br) and corn (Zea mays L.) crops grown in southern Georgia, and to determine their influence on potential fumonisin production. Pearl millet and corn samples were collected in Georgia in 1996, 1997 and 1998. Three percent of the pearl millet seeds had fungi similar to the Fusarium species of the G. fujikuroi species complex. One hundred and nineteen representative isolates visually similar to the G. fujikuroi species complex from pearl millet were paired with mating population A (Fusarium verticillioides (Sacc.) Nirenberg), mating population D (F. proliferatum (Matsushima) Nirenberg) and mating population F (F. thapsinum (Klittich, Leslie, Nelson and Marasas) tester strains. Successful crosses were obtained with 50.4%, 10.1% and 0.0% of these isolates with the A, D and F tester strains, while 39.5 of the isolates did not form perithecia with any tester strains. Two of the typical infertile isolates were characterized by DNA sequence comparisons and were identified as Fusarium pseudonygamai (Nirenberg and ODonnell), which is the first known isolation of this species in the United States. Based on the pattern of cross-compatibility, conidiogenesis, colony characteristics and media pigmentation, a majority of the infertile isolates belong to this species. Fumonisins FB1 and FB2 were not detected in any of the 81 pearl millet samples analyzed. The species of the G. fujikuroi species complex were dominant in corn and were isolated from 84%, 74% and 65% of the seed in 1996, 1997 and 1998, respectively. Representative species of the G. fujikuroi species complex were isolated from 1996 to 1998 Georgia corn survey (162, 104 and 111 isolates, respectively) and tested for mating compatibility. The incidence of isolates belonging to mating population A (F. verticillioides) ranged from 70.2% to 89.5%. Corn survey samples were assayed for fumonisins, and 63% to 91% of the 1996, 1997 and 1998 samples were contaminated. The total amount of fumonisins in the corn samples ranged from 0.6 to 33.3 g/g.  相似文献   

14.
Hussein  H.M.  Christensen  M.J.  Baxter  M. 《Mycopathologia》2003,156(1):25-30
Fusarium populations were investigated in maize grains and their husks about six weeks before harvest in three maize fields in the Manawatu region of New Zealand. The role of litter and soil as reservoirs for these fungi was also examined. Two techniques were used to examine populations, dilution plating and direct plating. Using the dilution plating technique the highest overall populations were found in husks (mean 2.2 × 105/g) and litter (mean 1.4 × 105/g), while similar lower numbers of viable propagules were obtained from grain (mean 2.1 × 103/g) and soil (2.8 × 103/g). With this technique five Fusarium spp. were commonly isolated; F. graminearum (Gibberella zeae), F. culmorum, F. subglutinans, F. oxysporum and F. acuminatum, of which F. graminearum was the most abundant. With the direct plating technique 87% of grains were infected with Fusarium spp., with some grains being infected with more than one species. Segments from husks and litter, 70% and 43% respectively, were colonised by Fusarium spp. F. graminearum was the most frequent species isolated from maize grain and husk segments(48.3 and 37.7% colonisation respectively). Other species, particularly F. culmorum and F. acuminatum, were also found to be common contaminants. A total of 15 Fusarium spp. was recovered from all material examined by both techniques. Cultures with characteristics resembling those of F. moniliforme were rarely observed.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
Fumonisins are a group of fungal toxins, occurring worldwide in maize infected mainly by Fusarium verticillioides. This paper describes the level of fumonisins in maize seed samples and the ability of F. verticillioides strains isolated from maize seeds grown in India to produce fumonisins. Forty-three seed samples intended to be used for consumption were collected from different regions of Karnataka and Andhra Pradesh. The samples were subjected to the agar plate method for the detection of F. verticillioides. Identification of F. verticillioides was done based on morphological characters and further confirmed by polymerase chain reaction. The majority of the samples were infected by F. verticillioides and infection percentage in the individual samples ranged from 5 to 51%. Twenty-three out of 35 (65%) strains were positive for fumonisin production in high performance liquid chromatography (HPLC) and competitive direct-enzyme linked immuno sorbent assay (CD-ELISA). Fumonisin level in seed samples ranged from 200 to 1,722 μg/g using CD-ELISA. HPLC could differentiate FB1 and FB2 toxins; out of 35 strains, 14 (40%) showed both FB1 and FB2 production. These findings indicate that there may be a risk of human exposure to fumonisins through the consumption of F. verticillioides infected corn-based foods in India.  相似文献   

16.
Pineapple (Ananas comosus) is one the important fruit crops planted in Malaysia, and this study was conducted to determine Fusarium spp. associated with diseases of the fruit crop as Fusarium is prevalent in tropical countries. Our objective was to identify and characterize Fusarium spp. associated with pineapple fruit rot and leaf spot mainly found on the fruits and leaves in Peninsular Malaysia. Fusarium isolates (n = 108) associated with pineapple fruit rot and leaf spot were characterized by morphological, molecular and phylogenetic analyses, a mating study and pathogenicity testing. TEF‐1α sequence analysis identified Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari and Fusarium sp. Mating was successful only between tester strains of F. proliferatum and F. verticillioides. Sexual crosses with standard tester strains showed that 82 isolates of F. proliferatum produced fertile crosses with mating population D (Gibberella intermedia) and three isolates of F. verticillioides were fertile with the tester strain of mating population A (Gibberella moniliformis). All isolates were pathogenic, causing pineapple fruit rot and leaf spot, thus fulfilling Koch's postulates.  相似文献   

17.
 To evaluate the genetic diversity of 18 maize inbred lines, and to determine the correlation between genetic distance and single-cross hybrid performance, we have used random amplified polymorphic DNA (RAPD), a PCR-based technique. Eight of these lines came from a Thai synthetic population (BR-105), and the others derived from a Brazilian composite population (BR-106). Thirty two different primers were used giving a total of 325 reproducible amplification products, 262 of them being polymorphic. Genetic divergence was determinated using Jaccard’s similarity coefficient, and a final dendrogram was constructed using an unweighted pair-group method with arithmetical averages (UPGMA). Cluster analysis divided the samples into three distinct groups (GI, GII and GIII) that were confirmed by principal-coordinate analysis. The genetic distances (GD) were correlated with important agronomic traits for single-cross hybrids and heterosis. No correlation was found when group division was not considered, but significant correlations were detected between GI×GII and GI×GIII GDs with their respective single-cross hybrid grain-yield values. Three groups were identified; that is, the BR-106 population was divided in two different groups and the BR-105 population remained mostly as one group. The results indicated that RAPD can be used as a tool for determining the extent of genetic diversity among tropical maize inbred lines, for allocating genotypes into different groups, and also to aid in the choice of the superior crosses to be made among maize inbred lines, so reducing the number of crosses required under field evaluation. Received: 24 May 1996 / Accepted: 22 November 1996  相似文献   

18.
One hundred and eighty one strains were selected among Fusarium verticillioides populations isolated from maize samples collected in three fields located in northern Italy. All the isolates were tested for their pathogenicity on maize seeds by assessing the seed germination percentages and the percentage infection indexes concerning seed colonization, radicle decay and coleoptile rot. Fusarium verticillioides strains did not affect seed germination even in presence of high seed colonization, but showed a variable pathogenic behavior according to the maize growth stages. Seedborne F. verticillioides population as well as strains isolated at maturity was effective in seed colonization and in inducing coleoptile rot, not causing however serious radicle decay. Only populations isolated at seedling and pre-silking stages showed high radicle decay ability. These results provide baseline information on F. verticillioides pathogenicity. They constitute an important input for further investigation of F. verticillioides biology in order to define its evolutionary potential.  相似文献   

19.
Asparagus spears collected from a total of six commercial plantings in Austria during the main harvest periods in May and June of 2003 and 2004 were examined for endophytic colonization byFusarium spp., particularlyF. proliferatum. Potentially toxigenic fungi such asF. proliferatum were isolated and identified by morphological characteristics using light microscopy. Fumonisin B1 inF. proliferatum-infected asparagus spears was detected with IAS-HPLC-FLD or HPLC-MS/MS. The identity of endophytic fungi colonizing of a total of 816 individual spears was determined. The incidence of infection byF. proliferatum and otherFusarium spp. was highly dependent on location and sampling date. The dominantFusarium species among the endophytic microflora wasF. oxysporum. Other frequently isolated species includedF. proliferatum, F. sambucinum, F. culmorum, F. avenaceum andF. equiseti. The incidence ofF. proliferatum-infected asparagus spears was less than 10% at four of the six sampling locations. At the two remaining locations, 20–47% of the spears examined were infected withF. proliferatum. Further exploration of FB1 generation in asparagus is required because the low levels of FB1 (10–50 (μg/kg) detected in harvested spears in 2003 and 2004 cannot be explained by the results of this study.
  相似文献   

20.
The identity of a patented endophytic bacterium was established by 16S rRNA sequence analysis as a strain of Bacillus mojavensis, a recently erected species within one of the B. subtilis subgroups. This strain of B. mojavensis is antagonistic to the fungus Fusarium moniliforme, an endophytic mycotoxin-producing pathogen of maize and other plants. There are five other species within this subgroup: Bacillus amyloliquefaciens, B. atrophaeus, B. licheniformis, Brevibacterium halotolerans, Paenibacillus lentimorbus, and P. popilliae. The objectives of this research were to screen other isolates of B. mojavensis, B. subtilis, and the other closely related Bacillus species for endophytic colonizing capacity and to determine the in vitro antagonism to F. moniliforme in an effort to survey the distribution of these traits, which are desirable biological control qualities within the Bacillaceae. Antagonism was determined on nutrient agar, and endophytic colonization was established with maize plants following recovery of rifampin-resistant mutants generated from all strains used in the study. The study established that all 13 strains of B. mojavensis, isolated from major deserts of the world, endophytically colonized maize and were antagonists to F. moniliforme. The endophytic colonization of maize by B. subtilis and other species within this subgroup of the Bacillaceae varied, as did antagonism, to F. moniliforme. Thus, this study suggests that endophytic colonization is another characteristic of the species B. mojavensis. The endophytic habit and demonstrated antagonism to the test fungus indicate that isolates of this species might prove to be important biological control organisms where the endophytic habit is desired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号