首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Mapping the microtubule binding regions of calponin   总被引:3,自引:0,他引:3  
The smooth muscle basic calponin interacts with F-actin and inhibits the actomyosin ATPase in a calmodulin or phosphorylation modulated manner. It also binds in vitro to microtubules and its acidic isoform, present in nonmuscle cells, and co-localizes with microfilaments and microtubules in cultured neurons. To assess the physiological significance and the molecular basis of the calponin-microtubule interaction, we have first studied the solution binding of recombinant acidic calponin to microtubules using quantitative cosedimentation analyses. We have also characterized, for the first time, the ability of both calponin isoforms to induce the inhibition of the microtubule-stimulated ATPase activity of the cytoskeletal, kinesin-related nonclaret dysjunctional motor protein (ncd) and the abolition of this effect by calcium calmodulin. This property makes calponin a potent inhibitor of all filament-activated motor ATPases and, therefore, a potential regulatory factor of many motor-based biological events. By combining the enzymatic measurements of the ncd-microtubules system with various in vitro binding assays employing proteolytic, recombinant and synthetic fragments of basic calponin, we further unambiguously identified the interaction of microtubules at two distinct calponin sites. One is inhibitory and resides in the segment 145-182, which also binds F-actin and calmodulin. The other one is noninhibitory, specific for microtubules, and is located on the COOH-terminal repeat-containing region 183-292. Finally, quantitative fluorescence studies of the binding of basic calponin to the skeletal pyrenyl F-actin in the presence of microtubules did not reveal a noticeable competition between the two sets of filaments for calponin. This result implies that calponin undergoes a concomitant binding to both F-actin and microtubules by interaction at the former site with actin and at the second site with microtubules. Thus, in the living cells, calponin could potentially behave as a cross-linking protein between the two major cytoskeletal filaments.  相似文献   

2.
Contractile activity of myosin II in smooth muscle and non-muscle cells requires phosphorylation of myosin by myosin light chain kinase. In addition, these cells have the potential for regulation at the thin filament level by caldesmon and calponin, both of which bind calmodulin. We have investigated this regulation using in vitro motility assays. Caldesmon completely inhibited the movement of actin filaments by either phosphorylated smooth muscle myosin or rabbit skeletal muscle heavy meromyosin. The amount of caldesmon required for inhibition was decreased when tropomyosin is present. Similarly, calponin binding to actin resulted in inhibition of actin filament movement by both smooth muscle myosin and skeletal muscle heavy meromyosin. Tropomyosin had no effect on the amount of calponin needed for inhibition. High concentrations of calmodulin (10 microM) in the presence of calcium completely reversed the inhibition. The nature of the inhibition by the two proteins was markedly different. Increasing caldesmon concentrations resulted in graded inhibition of the movement of actin filaments until complete inhibition of movement was obtained. Calponin inhibited actin sliding in a more "all or none" fashion. As the calponin concentration was increased the number of actin filaments moving was markedly decreased, but the velocity of movement remained near control values.  相似文献   

3.
Calponin isolated from chicken gizzard smooth muscle inhibits the actin-activated MgATPase activity of smooth muscle myosin in a reconstituted system composed of contractile and regulatory proteins. ATPase inhibition is not due to inhibition of myosin phosphorylation since, at calponin concentrations sufficient to cause maximal ATPase inhibition, myosin phosphorylation was unaffected. Furthermore, calponin inhibited the actin-activated MgATPase of fully phosphorylated or thiophosphorylated myosin. Although calponin is a Ca2(+)-binding protein, inhibition did not require Ca2+. Furthermore, although calponin also binds to tropomyosin, ATPase inhibition was not dependent on the presence of tropomyosin. Calponin was phosphorylated in vitro by protein kinase C and Ca2+/calmodulin-dependent protein kinase II, but not by cAMP- or cGMP-dependent protein kinases, or myosin light chain kinase. Phosphorylation of calponin by either kinase resulted in loss of its ability to inhibit the actomyosin ATPase. The phosphorylated protein retained calmodulin and tropomyosin binding capabilities, but actin binding was greatly reduced. The calponin-actin interaction, therefore, appears to be responsible for inhibition of the actomyosin ATPase. These observations suggest that calponin may be involved in regulating actin-myosin interaction and, therefore, the contractile state of smooth muscle. Calponin function in turn is regulated by Ca2(+)-dependent phosphorylation.  相似文献   

4.
Calponins: adaptable modular regulators of the actin cytoskeleton   总被引:3,自引:0,他引:3  
Over 20 years ago Katsuhito Takahashi isolated a heat stable, calmodulin and actin binding protein from chicken gizzard smooth muscle. Considered initially as a mainly structural component of the vertebrate smooth muscle contractile machinery, the 34-kDa calcium- and calmodulin-binding troponin T-like protein, calponin quickly appeared to also be involved in a number of regulatory and signal transduction events in the actin cytoskeleton. Calponins regulate actomyosin contraction, and reduce metastatic cell motility and tissue invasion. From these various cellular functions the biological role of calponin is now slowly emerging, namely that of an actin filament-stabilizing molecule that contributes to physiological thin filament turnover rates in different cell types.  相似文献   

5.
Calponin is a basic smooth muscle protein capable of binding to actin, calmodulin, tropomyosin, and phospholipids. We have found that the basic calponin interacted with brain tubulin under polymerized and unpolymerized conditions in vitro [Fujii, T., Hiromori, T., Hamamoto, M., and Suzuki, T. (1997) J. Biochem. 122, 344-351]. We examined the calponin-binding site on the tubulin molecule by sedimentation, limited digestion, chemical-cross linking, immunoblotting, and delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometric (DE MALDI-TOF) analyses. Calponin interacts with both the alpha and beta tubulins and only slightly with the tyrosinated and acetylated form of alpha tubulin. The binding of calponin to microtubules was blocked by adding poly(L-aspartic acid) (PLAA) or MAP2. After digestion of microtubule proteins with subtilisin, the amount of calponin binding to alphabetas microtubules was reduced compared to native microtubules, but no further reduction was observed in the case of alphasbetas microtubules. The chemical cross-linked products of calponin and synthesized peptides (KDYEEVGVDSVEGE; alpha-KE) derived from the C-terminal region of alpha tubulin and (YQQYQDATADEQG; beta-YG) and (GEFEEEGEEDEA; beta-GA) from that of beta tubulin were detected by mass spectrometry. One kind of calponin-peptide complex was formed in the presence of alpha-KE or beta-YG, while five complexes (calponin:peptide = 1:1-5) were generated in the presence of beta-GA. Peptides alpha-KE and beta-GA inhibited the binding of calponin to tubulin produced by EDC in a concentration-dependent manner. These findings suggest that basic calponin interacts with both tubulin subunits and that their C-terminal regions, which also contain the binding sites of MAP2, tau, and kinesin, may be involved in calponin-binding.  相似文献   

6.
Calponins are actin-binding proteins that are implicated in the regulation of actomyosin. Calponin binds filamentous actin (F-actin) through two distinct sites ABS1 and ABS2, with an affinity in the low micromolar range. We report that smooth muscle calponin binds monomeric actin with a similar affinity (K(d) of 0.15 microM). We show that the arrangement of binding is similar to that of F-actin by a number of criteria, most notably that the distance between Cys273 on calponin and Cys374 of actin is 29A when measured by fluorescent resonance energy transfer, the same distance as previously reported for F-actin.  相似文献   

7.
Calponin inhibits the actin-activated ATPase of smooth muscle myosin and thus has been proposed as a thin filament-based regulatory component in smooth muscle. To obtain information on the mechanism of inhibition by calponin we have used chemical modification of actin and cross-linking of actin and subfragment 1. Modification of Lys 61 of actin had no effect on the inhibition by calponin of acto-heavy meromyosin ATPase, i.e. different from tropomyosin-troponin. In addition, modification of the acidic N-terminal region of actin did not impair the ability of calponin to bind to F-actin. Finally, calponin was effective in inhibiting ATPase activity of cross-linked acto-subfragment 1. Therefore the mechanism of inhibition by calponin is distinct from troponin-tropomyosin and caldesmon in that it does not involve either the N-terminal acidic region of actin nor the area around Lys 61 and does not fit a simple steric blocking model.  相似文献   

8.
Calponin, a novel homologue of troponin T, purified from chicken gizzard was found to be one of the most susceptible proteins among smooth muscle contraction-associated proteins to hydrolysis by calpain I purified from human red blood cells. The high susceptibility of calponin was comparable to that reported for troponin T. The rate of degradation of calponin, unlike caldesmon and myosin light chain kinase, was accelerated when bound to calmodulin. When calponin existed as a bound form in both reconstituted actin filament and native thin filament, the rate of proteolysis was markedly retarded, indicating close association of calponin with actin filament. These observations are compatible with the view that calponin is an integral part of the actin-linked contractile machinery in smooth muscle.  相似文献   

9.
The two major isoforms of smoothelin (A and B) contain a calponin homology (CH) domain, colocalize with alpha-smooth muscle actin (alpha-SMA) in stress fibers and are only expressed in contractile smooth muscle cells (SMCs). Based on these findings, we hypothesized that smoothelins are involved in smooth muscle cell contraction, presumably via interaction with actin. The interaction between smoothelins and three different actin isoforms (alpha- and gamma-smooth muscle and alpha-skeletal actin [alpha-SKA]) was investigated using several in vitro assays. Smoothelin-B co-immunoprecipitated with alpha-smooth muscle actin from pig aorta extracts. In rat embryonic fibroblasts, transfected smoothelins-A and -B associated with stress fibers. In vitro dot blot assays, in which immobilized actin was overlaid with radio-labeled smoothelin, showed binding of smoothelin-A to actin filaments, but not to monomeric G-actin. A truncated smoothelin, containing the calponin homology domain, associated with stress fibers when transfected and bound to actin filaments in overlay, but to a lesser extent. ELISA results showed that the binding of smoothelin to actin has no significant isoform specificity. Our results indicate an interaction between smoothelin and actin filaments. Moreover, the calponin homology domain and its surrounding sequences appear to be sufficient to accomplish this interaction, although the presence of other domains is apparently necessary to facilitate and/or strengthen the binding to actin.  相似文献   

10.
Smooth muscle basic calponin, a major actin-, tropomyosin-, and calmodulin-binding protein, has been examined for its ability to interact with desmin intermediate filaments from smooth muscle cells using sedimentation analysis, turbidity changes, chemical cross-linking, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS), and electron microscopic observations. Calponin interacted with desmin intermediate filaments in a concentration-dependent manner in vitro. The binding of calponin to desmin produced dense aggregates at 30 degrees C. The dense aggregates were observed by electron microscopy to be composed of large anisotropic bundles of desmin filaments, indicating that calponin forms bundles of desmin filaments. The addition of calmodulin or S100 to the mixture of calponin and desmin caused the removal of calponin from the desmin filaments and inhibited bundle formation in the presence of Ca(2+), but not in the presence of EGTA. Calponin-related proteins including G-actin, tropomyosin, and SM22, had little effect on the binding of calponin to desmin filaments, whereas tubulin weakly inhibited the binding. Desmin had little influence on the calponin-actin and calponin-tubulin interactions using the zero-length cross-linker, EDC. Domain mapping with chymotryptic digestion showed that the binding site of calponin resides within the central a-helical rod domain of the desmin molecule. The chemical cross-linked products of calponin and synthetic peptides (TQ27, TNEKVELQELNDRFANYIEKVRFLEQQ; EE24, EEELRELRRQVDALTGQRARVEVE) derived from the rod domain were detected by MALDI TOF/MS. Furthermore, the calponin-desmin interaction was significantly inhibited by the addition of EE24, but only slightly by TQ27. These results suggest that calponin may act as a cross-linking protein between desmin filaments as well as among intermediate filaments, microfilaments and microtubules in smooth muscle cells.  相似文献   

11.
Expression and purification of the h1 and h2 isoforms of calponin   总被引:2,自引:0,他引:2  
Three homologous calponin isoforms, named h1, h2, and acidic calponins, have been found in birds and mammals. Based primarily on studies of chicken gizzard smooth muscle (h1) calponin, calponin has been identified as a family of actin-associated proteins that inhibit actomyosin ATPase activity. Evolutionary divergence of the calponin isoforms suggests differentiated function. While the role of h1 calponin in smooth muscle contraction is under investigation, h2 calponin has been shown regulating the function of actin cytoskeleton. Using cloned cDNA, we expressed mammalian h1 and h2 calponins in Escherichia coli. We have developed effective methods to purify biologically active h1 and h2 calponin proteins from transformed bacterial culture. The purified calponin isoform proteins were used to generate monoclonal antibodies that reveal epitopic structure difference between h1 and h2 calponins. Together with their differential expression in tissues and during development, the structural diversity of h1 and h2 calponins suggests non-redundant physiological function. Nevertheless, h1 and h2 calponins bind F-actin with similar affinity, indicating a conserved mechanism for their role in regulating actin filaments in smooth muscle and non-muscle cells.  相似文献   

12.
Alpha-actinin is the major F-actin crosslinking protein in both muscle and non-muscle cells. We report the crystal structure of the actin binding domain of human muscle alpha-actinin-3, which is formed by two consecutive calponin homology domains arranged in a "closed" conformation. Structural studies and available biochemical data on actin binding domains suggest that two calponin homology domains come in a closed conformation in the native apo-form, and that conformational changes involving the relative orientation of the two calponin homology domains are required for efficient binding to actin filaments. The actin binding activity of muscle isoforms is supposed to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which binds to the second calponin homology domain. On the basis of structural analysis we propose a distinct binding site for PtdIns(4,5)P2, where the fatty acid moiety would be oriented in a direction that allows it to interact with the linker sequence between the actin binding domain and the first spectrin-like repeat, regulating thereby the binding of the C-terminal calmodulin-like domain to this linker.  相似文献   

13.
Calponin is an actin binding protein found in the smooth muscle cells of chicken gizzard. The localization of the protein was examined in bovine platelets, mouse fibroblasts, and the smooth muscle cells of the bovine aorta. Immunoblotting of whole platelet lysates revealed that the antibody to chicken gizzard calponin recognized two proteins with apparent molecular masses of 37 and 23 kDa in the resting state and an additional high-molecular-weight component (approximately 40 kDa) in the activated state. The localizations of calponin and caldesmon, and the correlation of their localizations with that of the actin cytoskeleton were analyzed by immunofluorescence microscopy using appropriate antibodies and rhodamine-phalloidin. In resting bovine platelets, calponin exhibited the same distribution as actin filaments, which are organized in a characteristic wheel-like structure. A similar distribution was observed with the anti-caldesmon antibody. Colocalization of calponin and actin were shown in activated platelets and along stress fibers of both fibroblasts and smooth muscle cells. These results suggest not only a cytoskeletal role associated with microfilaments but also a regulatory role of these proteins for actin-myosin interaction.  相似文献   

14.
Calponin, an actin-linked regulatory protein in smooth muscle, caused a remarkable change in the fluorescence intensity of pyrene-labeled actin in the filamentous form. Calponin, an equimolar ratio to actin, decreased the fluorescence intensity of pyrene-labeled F-actin by some 60% to the level near monomeric actin. This change was partially reversed by Ca2+, when calmodulin was present. Thus it appears that calponin causes conformational changes in actin molecules in an actin filament so as to inhibit their interactions with myosin.  相似文献   

15.
Coulton A  Lehrer SS  Geeves MA 《Biochemistry》2006,45(42):12853-12858
Skeletal and smooth muscle tropomyosin (Tm) require acetylation of their N-termini to bind strongly to actin. Tm containing an N-terminal alanine-serine (AS) extension to mimic acetylation has been widely used to increase binding. The current study investigates the ability of an N-terminal AS extension to mimic native acetylation for both alpha alpha and beta beta smooth Tm homodimers. We show that (1) AS alpha-Tm binds actin 100-fold tighter than alpha-Tm and 2-fold tighter than native smooth alphabeta-Tm, (2) beta-Tm requires an AS extension to bind actin, and (3) AS beta-Tm binds actin 10-fold weaker than AS alpha-Tm. Tm is present in smooth muscle tissues as >95% heterodimer; therefore, we studied the binding of recombinant alphabeta heterodimers with different AS extensions. This study shows that recombinant Tm requires an AS extension on both alpha and beta chains to bind like native Tm and that the alpha chain contributes more to actin binding than the beta chain. Once assembled onto an actin filament, all smooth muscle Tm's regulate S1 binding to actin Tm in the same way, irrespective of the presence of an AS extension.  相似文献   

16.
Caldesmon was originally purified from gizzard smooth muscle as a major calmodulin-binding protein which also interacts with actin filaments. It has an alternative binding ability to either calmodulin or actin filaments depending upon the concentration of Ca2+ ("flip-flop binding"). Two forms of caldesmon (Mr's in the range of 120-150 kDa and 70-80 kDa) have been demonstrated in a wide variety of smooth muscles and nonmuscle cells. Immunohistochemical studies suggest that caldesmon is colocalized with actin filaments in vivo. Considering its abundance, the Ca2+-dependent flip-flop binding ability to either calmodulin or actin filaments, and its intracellular localization, caldesmon is expected to be involved in contractile events. Recent results from our laboratory have led to the conclusion that caldesmon regulates the smooth muscle and nonmuscle actin-myosin interaction and the smooth muscle actin-high Mr actin-binding protein (ABP or filamin) interactin in a flip-flop manner. It might function in cell motility by regulating the contractile system.  相似文献   

17.
Kinetics of the smooth muscle calponin-F-actin interaction was studied by stopped-flow measurements of light scattering and fluorescence intensity of pyrene-labelled F-actin. The intensity and character of the changes in light scattering, and thus the mode of calponin binding to actin filaments leading to changes in their shape and bundling, depend on the molar ratio of the two proteins. Parallel measurements of pyrene-fluorescence quenching upon calponin binding revealed that intrinsic conformational changes in actin filaments are delayed relative to the binding process and are not markedly influenced by the mode of calponin binding. Bundling of actin filaments by calponin was not correlated with fluorescence changes and thus with alterations in the structure of actin filaments.  相似文献   

18.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

19.
Effect of calponin on actin-activated myosin ATPase activity   总被引:8,自引:0,他引:8  
Calponin inhibited the actin-activated myosin MgATPase activity in a dose-dependent manner without affecting the phosphorylation level of myosin light chain. This inhibition was Ca2(+)-independent. The decrease in enzymatic activity of myosin was correlated with binding of calponin to actin-tropomyosin filaments. Caldesmon showed a further inhibition of the calponin-induced inhibition of MgATPase activity of the thiophosphorylated myosin. Calponin-induced inhibition of the myosin MgATPase activity was reversed by the addition of calmodulin only in the presence of Ca2+. These results suggest that calponin acts as an inhibitory component of smooth muscle thin filaments.  相似文献   

20.
Modulation of smooth muscle calponin by protein kinase C and calmodulin   总被引:2,自引:0,他引:2  
When smooth muscle calponin was incubated with protein kinase C, 1 mole of phosphate was incorporated per mole of calponin. The apparent Km value for calponin of the protein kinase was about 0.4 microM. The phosphorylation of calponin by protein kinase C was inhibited markedly by calmodulin in a calcium-dependent manner. Kinetic analysis of calmodulin-induced inhibition of calponin phosphorylation by protein kinase C revealed that calmodulin inhibited the phosphorylation in a noncompetitive fashion with calponin and the determined Ki value was 0.4 microM. These results suggest that interaction of calmodulin with calponin may play a regulatory role in the phosphorylation by protein kinase C and smooth muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号