首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cis-elements of protein transport to the plant vacuoles   总被引:6,自引:0,他引:6  
Vacuolar proteins are synthesized and translocated into the endoplasmic reticulum and transported to the vacuoles through the secretory pathway. Three different types of vacuolar sorting signals have been identified, carried by N- or C-terminal propeptides or internal sequences. These signals are needed to target proteins to the different types of vacuoles that can coexist in a single plant cell. A conserved motif (NPIXL or NPIR) was identified within N-terminal propeptides, but can also function in a C-terminal propeptide and targets proteins in a receptor-mediated manner to a lytic vacuole. Binding to a family of putative sorting receptors for sequence-specific vacuolar sorting signals has been used as an assay to identify further peptides with other binding motifs. No motif was found in C-terminal sorting sequences, which need an accessible terminus, suggesting that they are recognized from the end by a still unknown receptor. The phosphatidylinositol kinase inhibitor wortmannin differentially affects sorting mediated by these two sorting sequences, suggesting different sorting mechanisms. Less is known about sorting mediated by internal protein sequences, which do not contain the conserved motif identified in N-terminal propeptides and by function by aggregation, leading to transport by coat-less dense vesicles to protein storage vacuoles. Even less is known about the sorting of tonoplast proteins, for which several sorting systems will also be needed.  相似文献   

2.
Role of N- and O-glycans in polarized biosynthetic sorting   总被引:5,自引:0,他引:5  
The maintenance of proper epithelial function requires efficient sorting of newly synthesized and recycling proteins to the apical and basolateral surfaces of differentiated cells. Whereas basolateral protein sorting signals are generally confined to their cytoplasmic regions, apical targeting signals have been identified that localize to luminal, transmembrane, and cytoplasmic aspects of proteins. In the past few years, both N- and O-linked glycans have been identified as apical sorting determinants. Glycan structures are extraordinarily diverse and have tremendous information potential. Moreover, because the oligosaccharides added to a given protein can change depending on cell type and developmental stage, the potential exists for altering sorting pathways by modulation of the expression pattern of enzymes involved in glycan synthesis. In this review, we discuss the evidence for glycan-mediated apical sorting along the biosynthetic pathway and present possible mechanisms by which these common and heterogeneous posttranslational modifications might function as specific sorting signals. glycosylation; epithelia; polarity; kidney; intestine  相似文献   

3.
Lipid trafficking and sorting: how cholesterol is filling gaps   总被引:6,自引:0,他引:6  
Recent research has highlighted a role for cholesterol homeostasis in the regulation of trafficking and sorting of sphingolipids. This sorting may dictate the nature of the acyl chain species of phospholipids in the plasma membrane which, in turn, may govern the selective partitioning of these lipids into lateral domains. Recently, several proteins have been identified that play a role in the flow and sorting of all major lipid classes.  相似文献   

4.
Irie T  Sakaguchi T 《Uirusu》2007,57(1):1-7
Our knowledge about envelope virus budding has been dramatically increased, since L-domain motifs were identified within their matrix and retroviral Gag proteins which drive virus budding. These viral proteins have been shown to interact with host cellular proteins involved in endocytosis and/or multi-vesicular body (MVB) sorting via their L-domains. Since budding of many enveloped viruses have been reported to be dependent on the activity of cellular Vps4, which catalyzes the disassembly of ESCRT machinery in the final step of protein sorting, this cellular function is believed to be utilized for efficient virus budding. However, for many enveloped viruses, L-domain motifs have not yet been identified, and the involvement of MVB sorting machinery in virus budding is still unknown. In this review, we will focus on paramyxoviruses among such viruses, and discuss their budding with the latest information.  相似文献   

5.
Protein targeting to the yeast vacuole   总被引:19,自引:0,他引:19  
Mutational and gene fusion studies have identified localization signals that target proteins to the yeast lysosome-like vacuole. Genetic analyses have also identified groups of genes (VPS and PEP) whose products are required for recognition of these signals, and sorting and transport of proteins to the vacuole. One of the components involved in protein sorting has been shown to be the vacuolar H+-ATPase, presumably via its role in vacuolar acidification.  相似文献   

6.
The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood on comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognize ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules.  相似文献   

7.
The mechanism for vacuolar sorting of seed storage proteins is as yet poorly understood and no receptor has been identified to date. The homotrimeric glycoprotein phaseolin, which is the major storage protein of the common bean, requires a transient tetrapeptide at the C-terminus for its vacuolar sorting. A mutated construct without the tetrapeptide is secreted. We show here that coexpression of wild-type phaseolin and the mutated, secreted form in transgenic tobacco results in the formation of mixed trimers and partial vacuolar delivery of the mutated polypeptides and partial secretion of wild-type polypeptides. This indicates that the sorting signal has a cumulative effect within a phaseolin trimer. The result is discussed in the light of the hypothesized mechanisms for vacuolar sorting of seed storage proteins.  相似文献   

8.
Adaptor protein (AP) complexes are cytosolic heterotetramers that mediate the sorting of membrane proteins in the secretory and endocytic pathways. AP complexes are involved in the formation of clathrin-coated vesicles (CCVs) by recruiting the scaffold protein, clathrin. AP complexes also play a pivotal role in the cargo selection by recognizing the sorting signals within the cytoplasmic tail of integral membrane proteins. Six distinct AP complexes have been identified. AP-2 mediates endocytosis from the plasma membrane, while AP-1, AP-3 and AP-4 play a role in the endosomal/lysosomal sorting pathways. Moreover, tissue-specific sorting events such as the basolateral sorting in polarized epithelial cells and the biogenesis of specialized organelles including melanosomes and synaptic vesicles are also regulated by members of AP complexes. The application of a variety of methodologies have gradually revealed the physiological role of AP complexes.  相似文献   

9.
Several protein vacuolar sorting determinants (VSDs) have been identified in higher plants. Glutelin as a major storage protein in rice endosperm cells is transported to a protein storage vacuole (PSV). How glutelin sort to PSV and the mechanism of the intracellular trafficking has remained unknown. Here, a sequence-specific vacuolar sorting determinant (ssVSD) is identified by serial deletions of rice glutelin and its role in the protein-sorting process analyzed by transgenic approaches and transient assays. The ssVSD consists of six residues (QRLKHN) within the β-subunit of glutelin is sufficient to direct the glutelin to the protein body II in the rice endosperm cells. We found that protein-sorting via the ssVSD takes place by a ~680-kDa sorting complex containing the receptor Oryza sativa receptor-like membrane Ring-H2 3 (OsRMR3). Further study indicated that OsRMR3 and the ssVSD are essential for glutelin trafficking. Furthermore, site-directed mutagenesis showed that the leucine residues in the ssVSD are critical for protein sorting.  相似文献   

10.
Sorting of plasma membrane proteins in epithelial cells.   总被引:8,自引:0,他引:8  
Proteins follow two routes to reach the correct surface (apical or basolateral) of a polarized epithelial cell: direct sorting from the trans-Golgi network and transcytosis from early endosomes. Several signals have been identified recently that control these sorting events, namely a glycosyl-phosphatidylinositol anchor for apical targeting, a 14-residue cytoplasmic segment of the polymeric immunoglobulin receptor for basolateral targeting, and phosphorylation of a Ser residue for transcytosis of this receptor. The machinery involved is still poorly understood.  相似文献   

11.
Sorting nexins are PX domain‐containing proteins that bind phospholipids and often act in membrane trafficking where they help to select cargo. However, the functions and cargo specificities of many sorting nexins are unknown. Here, a high‐throughput imaging screen was used to identify new sorting nexin cargo in the yeast Saccharomyces cerevisiae. Deletions of 9 different sorting nexins were screened for mislocalization of a set of green fluorescent protein (GFP)‐tagged membrane proteins found at the plasma membrane, Golgi or endosomes. This identified 27 proteins that require 1 or more sorting nexins for their correct localization, 23 of which represent novel sorting nexin cargo. Nine hits whose sorting was dependent on Snx4, the sorting nexin‐containing retromer complex, or both retromer and Snx3, were examined in detail to search for potential sorting motifs. We identified cytosolic domains of Ear1, Ymd8 and Ymr010w that conferred retromer‐dependent sorting on a chimeric reporter and identified conserved residues required for this sorting in a functional assay. This work defined a consensus sequence for retromer and Snx3‐dependent sorting.   相似文献   

12.
The secretory pathway of plants is a network of organelles that communicate via vesicle transport. This process involves budding on donor membranes followed by their targeting to, recognition by and fusion with the acceptor membrane. Protein sorting through the plant secretory pathway is a process that requires the specific recognition of signals by receptor molecules. For soluble proteins, recognition takes place in the lumen of the secretory pathway. The sorting receptors must mediate signal transduction across the membrane to convey the information about the presence of cargo molecules to cytosolic factors, which regulate the formation of transport vesicles. Recently, a number of key elements in this process have been identified, providing tools to study protein sorting at the molecular level.  相似文献   

13.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

14.
The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.  相似文献   

15.
The organisation of the animal body into distinct tissues requires adhesive mechanisms that promote and maintain the physical segregation, the sorting, of different cell populations. Signals that control differential cell affinities across tissue boundaries have been identified, including Hedgehog, Notch, and EGF receptor signalling. Further, several examples demonstrate that cell sorting in vivo can be driven by Eph/ephrin signalling and by the differential expression of cadherins that modulate cell adhesion and motility.  相似文献   

16.
In polarized Madin-Darby canine kidney (MDCK) cells, the transferrin receptor (TR) is selectively delivered to the basolateral surface, where it internalizes transferrin via clathrin-coated pits and recycles back to the basolateral border. Mutant tailless receptors are sorted randomly in both the biosynthetic and endocytic pathways, indicating that the basolateral sorting of TR is dependent upon a signal located within the 61–amino acid cytoplasmic domain. To identify the basolateral sorting signal of TR, we have analyzed a series of mutant human TR expressed in MDCK cells. We find that residues 19–41 are sufficient for basolateral sorting from both the biosynthetic and endocytic pathways and that this is the only region of the TR cytoplasmic tail containing basolateral sorting information. The basolateral sorting signal is distinct from the YTRF internalization signal contained within this region and is not tyrosine based. Detailed functional analyses of the mutant TR indicate that residues 29–35 are the most important for basolateral sorting from the biosynthetic pathway. The structural requirements for basolateral sorting of internalized receptors from the endocytic pathway are not identical. The most striking difference is that alteration of G31DNS34 to YTRF impairs basolateral sorting of newly synthesized receptors from the biosynthetic pathway but not internalized receptors from the endocytic pathway. Also, mutations have been identified that selectively impair basolateral sorting of internalized TRs from the endocytic pathway without affecting basolateral sorting of newly synthesized receptors. These results imply that there are subtle differences in the recognition of the TR basolateral sorting signal by separate sorting machinery located within the biosynthetic and endocytic pathways.  相似文献   

17.
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.  相似文献   

18.
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.  相似文献   

19.
To understand the potential functions of the cytoplasmic tail of Na(+)/taurocholate cotransporter (Ntcp) and to determine the basolateral sorting mechanisms for this transporter, green fluorescent protein-fused wild type and mutant rat Ntcps were constructed and the transport properties and cellular localization were assessed in transfected COS 7 and Madin-Darby canine kidney (MDCK) cells. Truncation of the 56-amino acid cytoplasmic tail demonstrates that the cytoplasmic tail of rat Ntcp is involved membrane delivery of this protein in nonpolarized and polarized cells and removal of the tail does not affect the bile acid transport function of Ntcp. Using site-directed mutagenesis, two tyrosine residues, Tyr-321 and Tyr-307, in the cytoplasmic tail of Ntcp have been identified as important for the basolateral sorting of rat Ntcp in transfected MDCK cells. Tyr-321 appears to be the major basolateral-sorting determinant, and Tyr-307 acts as a supporting determinant to ensure delivery of the transporter to the basolateral surface, especially at high levels of protein expression. When the two Tyr-based basolateral sorting motifs have been removed, the N-linked carbohydrate groups direct the tyrosine to alanine mutants to the apical surface of transfected MDCK cells. The major basolateral sorting determinant Tyr-321 is within a novel beta-turn unfavorable tetrapeptide Y(321)KAA, which has not been found in any naturally occurring basolateral sorting motifs. Two-dimensional NMR spectroscopy of a 24-mer peptide corresponding to the sequence from Tyr-307 to Thr-330 on the cytoplasmic tail of Ntcp confirms that both the Tyr-321 and Tyr-307 regions do not adopt any turn structure. Since the major motif YKAA contains a beta-turn unfavorable structure, the Ntcp basolateral sorting may not be related to the clathrin-adaptor complex pathway, as is the case for many basolateral proteins.  相似文献   

20.
The multivesicular body(MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport(ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley(Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies(PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号