首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, solvolytic behaviour and cytotoxicity of novel 4-nitrobenzyl carbamates and carbonates derived from 3-amino-4-hydroxymethylacridine 1 are described. Compounds 2 and 6 are both substrates for Escherichia coli nitroreductase and the highly active lead structure 1 is liberated upon incubation of the two compounds in the presence of NTR and its cofactor NADH. Additionally, the cytostatic activity of 2 and 6 against human HT29 colon carcinoma cell lines is decreased 80-fold and 360-fold, respectively, indicating their suitability and potency as prodrugs for either gene-directed enzyme prodrug therapy or antibody-directed enzyme prodrug therapy.  相似文献   

2.
We report an extensive structure–activity relationship (SAR) of 78 compounds active against two pancreatic cancer cell lines. Our comprehensive evaluation of these compounds utilizes SAR that allow us to evaluate which features of potent compounds play a key role in their cytotoxicity. This is the first report of 19 new second-generation structures, where these new compounds were designed from the first generation of 59 compounds. These 78 structures were tested for their cytotoxicity and this is the first report of their activity against two pancreatic cancer cell lines. Our results show that out of 78 compounds, three compounds are worth pursuing as leads, as they show potency of ?55% in both cancer cell lines. These three compounds all have a common structural motif, two consecutive d-amino acids and an N-methyl moiety. Further, of these three compounds, two are second-generation structures, indicating that we can incorporate and utilize data from the first generation to design potency into the second generation. Finally, one analog is in the mid nanomolar range, and has the lowest IC50 of any reported San A derivative. These analogs share no structural homology to current pancreatic cancer drugs, and are cytotoxic at levels on par with existing drugs treating other cancers. Thus, we have established Sansalvamide A as an excellent lead for killing multiple pancreatic cancer cell lines.  相似文献   

3.
BACKGROUND: Since human colon cancers often contain significant quantities of progastrin-processing intermediates, we sought to explore the possibility that the biosynthetic precursor of fully processed amidated gastrin, glycine-extended gastrin, may exert trophic effects on human colonic cancer cells. MATERIALS AND METHODS: Binding of radiolabeled glycine-extended and amidated gastrins was assessed on five human cancer cell lines: LoVo, HT 29, HCT 116, Colo 320DM, and T 84. Trophic actions of the peptides were assessed by increases in [3H]thymidine incorporation and cell number. Gastrin expression was determined by northern blot and radioimmunoassay. RESULTS: Amidated gastrin did not bind to or stimulate the growth of any of the five cell lines. In contrast, saturable binding of radiolabeled glycine-extended gastrin was seen on LoVo and HT 29 cells that was not inhibited by amidated gastrin (10(-6) M) nor by a gastrin/CCKB receptor antagonist (PD 134308). Glycine-extended gastrin induced a dose-dependent increase in [3H]thymidine uptake in LoVo (143 +/- 8% versus control at 10(-10) M) and HT 29 (151 +/- 11% versus control at 10(-10) M) cells that was not inhibited by PD 134308 or by a mitogen-activated protein (MAP) or ERK kinase (MEK) inhibitor (PD 98509). Glycine-extended gastrin did stimulate jun-kinase activity in LoVo and HT 29 cells. The two cell lines expressed the gastrin gene at low levels and secreted small amounts of amidated gastrin and glycine-extended gastrin into the media. CONCLUSIONS: Glycine-extended gastrin receptors are present on human colon cancer cells that mediate glycine-extended gastrin's trophic effects via a MEK-independent mechanism. This suggests that glycine-extended gastrin and its novel receptors may play a role in colon cancer cell growth.  相似文献   

4.
We previously reported the discovery of 2-aryl-4-benzoyl-imidazoles (ABI-I) as potent antiproliferative agents for melanoma. To further understand the structural requirements for the potency of ABI analogs, gain insight in the structure-activity relationships (SAR), and investigate metabolic stability for these compounds, we report extensive SAR studies on the ABI-I scaffold. Compared with the previous set of ABI-I analogs, the newly synthesized ABI-II analogs have lower potency in general, but some of the new analogs have comparable potency to the most active compounds in the previous set when tested in two melanoma and four prostate cancer cell lines. These SAR studies indicated that the antiproliferative activity was very sensitive to subtle changes in the ligand. Tested compounds 3ab and 8a are equally active against highly paclitaxel resistant cancer cell lines and their parental cell lines, indicating that drugs developed based on ABI-I analogs may have therapeutic advantages over paclitaxel in treating resistant tumors. Metabolic stability studies of compound 3ab revealed that N-methyl imidazole failed to extend stability as literature reported because de-methylation was found as the major metabolic pathway in rat and mouse liver microsomes. However, this sheds light on the possibility for many modifications on imidazole ring for further lead optimization since the modification on imidazole, such as compound 3ab, did not impact the potency.  相似文献   

5.
Several substituted 4-aryloxy- and 4-arylsulfanyl-phenyl-2-aminothiazoles were synthesized and evaluated for cytotoxic activity against estrogen-positive, estrogen-negative, and adriamycin-resistant human breast cancer cell lines. 4-[4'-(3,4-Dichlorophenoxy)-phenyl]-thiazol-2-yl ammonium iodide demonstrated potent activity against both estrogen-positive and negative breast cancer cell lines with low micromolar (microM) GI(50) values. In addition, we have identified several 2-aminothiazoles that demonstrated selective potency for the adriamycin-resistant and estrogen-negative breast cancer cell lines. The results suggest that these 2-aminothiazoles represent lead compounds for evaluation in animal models of breast cancer.  相似文献   

6.
Knowledge regarding the expression of the recently cloned estrogen receptor beta (ERbeta) in colonic mucosa is limited. In this study, we demonstrated that five human colon cancer cell lines, HT29, Colo320, Lovo, SW480, and HCT116, expressed ERbeta mRNA, but lacked ERalpha mRNA. Results from a cell growth assay demonstrated that these colon cancer cells were not influenced by estrogen, while genistein possessed slight growth inhibitory effects on HT29, Colo320 and Lovo cells at 10 microM, at which concentration is stimulated the growth of ERalpha-positive human breast cancer MCF-7 cells. Tamoxifen inhibited the growth of HT29 and Colo320 cells, dose-dependently, as well as MCF-7 cells. A transfected reporter plasmid containing a vitellogenin estrogen response element could be activated by estradiol in Colo320 cells. Taken together with previous reports, these data suggest that ERalpha and ERbeta may have different biological functions in colon cells.  相似文献   

7.
The reaction of carboxylic acids with Baylis-Hillman reaction derived α-bromomethyl acrylic esters readily provide 2-(alkoxycarbonyl)allyl esters in good to excellent yields. These functionalized allyl esters have been evaluated for their cell proliferation inhibition properties against breast cancer (MDA-MB-231 and 4T1) and pancreatic cancer (MIAPaCa-2) cell lines to explore their potential as anticancer agents. Several of the synthesized derivatives exhibit good potency against all three cancer cell lines. Our structure activity relationship (SAR) studies on 2-carboxycarbonyl allyl esters indicate that substituted aromatic carboxylic acids provide enhanced activity compared to substituted aliphatic carboxylic acid analogs. Di- and tri-allyl esters derived from di-and tri-carboxylic acids exhibit higher inhibition of cell proliferation than mono esters. Further SAR studies indicate that the double bond in the 2-(alkoxycarbonyl)allyl ester is required for its activity, and there is no increase in activity with increased chain length of the alkoxy group. Two lead candidate compounds have been identified from the cell proliferation inhibition studies and their preliminary mechanism of action as DNA damaging agents has been evaluated using epifluorescence and western blot analysis. One of the lead compounds has been further evaluated for its systemic toxicity in healthy CD-1 mice followed by anticancer efficacy in a triple negative breast cancer MDA-MB-231 xenograft model in NOD-SCID mice. These two in vivo studies indicate that the lead compound is well tolerated in healthy CD-1 mice and exhibits good tumor growth inhibition compared to breast cancer drug doxorubicin.  相似文献   

8.
The human cell-surface antigen epithelial glycoprotein-2 recognized by the monoclonal antibody MOC-31 is an epithelial tumour-associated glycoprotein expressed in non-squamous carcinomas. MOC-31 immunoreactivity was investigated in human breast, colon, ovarian and lung cancer cell lines, grown either in vitro or in severe combined immunodeficient (SCID) mice as solid tumours and/or metastases. Three of four small-cell lung cancer cell lines (NCI-H69, OH3 and SW2) and three of four ovarian cancer cell lines (SoTü 1, 3 and 4) expressed epithelial glycoprotein-2. In contrast, all three breast (MCF-7, BT20, T47D) and all three colon (HT29, CACO2, SW480) cancer cell lines strongly reacted with monoclonal antibody MOC-31. A notable difference in MOC-31 immunoreactivity was observed in spontaneously formed lung metastases of HT29 colon cancer cells. Whereas larger metastases (> 30 cells) re acted with a similar staining pattern to the primary tumour, smaller metastases did not. These findings indicate that differentiation processes during the epithelial–mesenchymal transition occur in metastases, which lead to a transient loss of epithelial glycoprotein-2 expression during the migratory and early post- migratory period. This loss of antigen expression indicates that the process of metastases formation is a regulatory event, and this transient loss of antigen expression might represent a potential obstacle to antibody-based therapy in the setting of minimal residual disease.  相似文献   

9.
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX–LOX inhibitors in colon cancer cells.  相似文献   

10.
11.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

12.
We have previously described 2-aryl-thiazolidine-4-carboxylic acid amides as a novel class of antiproliferative agents for prostate cancer. Screening these compounds with melanoma cell lines revealed that several of them have potent antiproliferative activity and selectivity against melanoma. To further improve the potency and selectivity, we synthesized a new series of analogs and tested them in two melanoma cell lines and fibroblast cells (negative controls). Comparison of anticancer effects of these compounds with a standard chemotherapeutic agent, sorafenib, showed that they are very effective in killing melanoma cells with low micromolar to nanomolar antiproliferative activity and provide us a new lead for developing potential drugs for melanoma.  相似文献   

13.
A series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents.  相似文献   

14.
A new sesquiterpene ester, tunetanin A ( 1 ), a new sesquiterpene coumarin, tunetacoumarin A ( 2 ), together with eight known compounds, i.e., coladin ( 3 ), coladonin ( 4 ), isosmarcandin ( 5 ), 13‐hydroxyfeselol ( 6 ), umbelliprenin ( 7 ) propiophenone ( 8 ), β‐sitosterol ( 9 ), and stigmasterol ( 10 ), were isolated from the roots of Ferula tunetana. Their structures were elucidated on the basis of extensive spectroscopic methods, including 1D‐ and 2D‐NMR experiments and MS analysis, as well as by comparison with published data. The cytotoxicity of compounds 1 – 7 towards two human colon cancer cell lines, HT‐29 and HCT 116, was evaluated. Compounds 3, 4 , and 6 showed weak cytotoxic activities.  相似文献   

15.
Two series of simplified analogs of the ecteinascidin-saframycin type alkaloids were prepared from l-DOPA. Their in vitro antitumor activity was tested against three human cancer cell lines (HCT-8 colon carcinoma, Bel-7402 liver carcinoma, and BGC-823 gastric carcinoma). Among these compounds, the ester analogs have stronger activities than those of amide analogs in general. Among them, 1-naphthalene carboxylate ester analog 31 has the strongest activity against BGC-823 cells.  相似文献   

16.

Early-stage gastrointestinal (GI) carcinomas are amenable malignancies, however, due to late diagnosis or lack of proper medication, alternative treatment necessitates new approaches such as dendritic cell (DC) therapy. Our previous microarray study indicated Lymphocyte antigen-6 (LY6E) as a commonly overexpressed biomarker in three lethal GI cancers, colon, gastric, and pancreatic. Therefore, we examined the antigenic potency of LY6E in stimulating DCs to elicit tumor-specific responses against human colorectal cancer (CRC) and gastric cancer (GC) cell lines HT-29 and AGS, respectively. LY6E peptide-pulsed DCs stimulated lymphocytes up to 55.9% in comparison with mature DCs (48.3%). Also, flow cytometry analysis of lymphocyte proliferation illustrated that the populations CD4+ and CD8+ were increased after treating by peptide-pulsed DCs (62.9% and 48.7% respectively). Furthermore, the cytotoxicity assay demonstrated that the 40:1 ratio of stimulated lymphocytes on AGS and HT29 cell lines was 65.1% and 66.2%, respectively. The research exposed that LY6E loaded DCs had substantial impact stimulation, proliferation, and lineage differentiation of lymphocytes. Besides, co-cultured of primed lymphocytes with AGS and HT29 cell lines exhibited cytotoxic activity. These data suggest LY6E as a potential candidate in developing DC therapy against CRC and AGS.

  相似文献   

17.
Antitumor activity of triterpenoid and its derivatives has attracted great attention recently. Our previous efforts led to the discovery of a series of NO‐donor betulin derivatives with potent antitumor activity. Herein, we prepared eight compounds derived from ursolic acid (UA). All the compounds were evaluated for their in vitro cytotoxicity against four human cancer cell lines (HepG‐2, MCF‐7, HT‐29 and A549). Among the compounds tested, compound 4a was found to be most active against HT‐29 (IC50=4.28 μm ). Further biological assays demonstrated that compound 4a could induce cell cycle arrest at G1 phase and apoptosis in a dose‐dependent manner. In addition, compound 4a was found to upregulate pro‐apoptotic Bax, p53 and downregulate anti‐apoptotic Bcl‐2. All these results suggested that compound 4a is a potential candidate drug for the therapy of colon cancer.  相似文献   

18.
3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.  相似文献   

19.
A novel series of 5,7-dibromoisatin analogs were synthesized and evaluated for their cytotoxicities against four human cancer cell lines including colon HT29, breast MCF-7, lung A549 and melanoma UACC903. Analogs 6, 11 and 13 displayed good in vitro anticancer activity on the HT29 human colon cancer cell line in the 1 μM range. Analogs 5, 9 and 12, containing a selenocyanate group in the alkyl chain were the most promising compounds on the breast cancer MCF-7 cell line. Biological assays relating to apoptosis were performed to understand the mechanism of action of these analogs. Compounds 5 and 6 were found to inhibit tubulin polymerization to the same extent as the anticancer drug vinblastine sulfate, but compounds 11 and 13 inhibited significantly better than vinblastine. Further western blot analysis suggested that compound 6 at 2 μM reduced both levels and phosphorylation state of Akt. Compounds 11 and 13 at 1 μM caused reduced Akt protein levels and strongly suppressed the phosphorylation of Akt. Therefore, 11 and 13 were demonstrated as efficient dual inhibitors of both tubulin polymerization and the Akt pathway and good candidates for further study. More importantly, the strategy of microtubule and Akt dual inhibitors might be a promising direction for developing novel drugs for cancer.  相似文献   

20.
Peritoneal carcinomatosis involves a series of events including tumor cell interactions with mesothelial cells and the extracellular matrix (ECM). We have studied the adhesive and invasive properties of four human colorectal carcinoma cell lines (Co115, HT29, SW480, SW620) confronted in vitro with a human mesothelial cell monolayer or with the ECM proteins collagen IV, laminin-1, fibronectin, tenascin-C and vitronectin. Quantitation was achieved following staining of tumor cells with the calcein-AM fluorescent dye. We found that all four cell lines rapidly adhered to a mesothelial cell monolayer. This adhesion event was not inhibitable by anti-integrin and anti-CD44 antibodies. Following initial attachment, the SW480 and SW620 cells invaded the mesothelial cell monolayer more aggressively than HT29 and Col 15 cells. All cell lines adhered to ECM proteins with each one exhibiting an individual adhesion pattern. Adhesion to matrix was completely integrin-dependent. When tested in an invasion assay, HT29 and Co115 cells crossed Matrigel-coated filters while SW480 and SW620 cells did not. This invasion was inhibited by anti-β1 integrin antibodies. Taken together, our results demonstrate that the initial colorectal tumor cell—mesothelial cell interaction occurs through an integrin-independent mechanism while adhesion to matrix proteins and invasion through Matrigel are integrin-dependent events. Furthermore, the different invasive capacity of SW480 and SW620 versus HT29 and Co115 cells upon interaction with a mesothelial cell monolayer or Matrigel suggests that these two invasion events may be mediated by distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号