首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously communicated that heparin released asymmetric acetylcholinesterase (AChE) from cholinergic synapses. Here we report studies showing that heparin, besides releasing asymmetric AChE from the skeletal muscle extracellular matrix (ECM), specifically solubilizes a dermatan sulfate proteoglycan (DSPG) which accounts for more than 95% of the 35S-released material. The co-solubilization of AChE and the proteoglycan opens up the possibility that both macromolecules could be involved in the formation of the soluble AChE complex observed after incubation of muscle homogenate with heparin. Our results suggest a possible association between asymmetric AChE and DSPG at the muscle ECM, moreover this work is the first report of the existence of DSPG at the skeletal muscle cell surface.  相似文献   

2.
It has been reported previously that heparin, a sulfated glycosaminoglycan, releases the asymmetric 16 S form of acetylcholinesterase (AChE) from cholinergic synapses. Here it is shown that heparin releases the synaptic AChE not as individual 16 S species but as multimolecular aggregates (30 S) of such molecules. Heparin is able to convert low-ionic strength AChE aggregates into a heparin type of AChE aggregates. Our results suggest that the AChE aggregates detached by heparin are likely to be the physiologically important state of aggregation of the 16 S AChE form in the synaptic basal lamina.  相似文献   

3.
Acetylcholinesterase (AChE) produced by spinal cord motoneurons accumulates within axo–dendritic spinal cord synapses. It is also secreted from motoneuron cell bodies, through their axons, into the region of neuromuscular junctions, where it terminates cholinergic neurotransmission. Here we show that transgenic mice expressing human AChE in their spinal cord motoneurons display primarily normal axo–dendritic spinal cord cholinergic synapses in spite of the clear excess of transgenic over host AChE within these synapses. This is in contrast to our recent observation that a modest excess of AChE drastically a}ects the structure and long– term functioning of neuromuscular junctions in these mice although they express human AChE in their spinal cord, but not muscle. Enlarged muscle endplates with either exaggerated or drastically shortened post–synaptic folds then lead to a progressive neuromotor decline and massive amyotrophy (Andres et al., 1997). These findings demonstrate that excess neuronal AChE may cause distinct effects on spinal cord and neuromuscular synapses and attribute the late–onset neuromotor deterioration observed in AChE transgenic mice to neuromuscular junction abnormalities. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

4.
Heparan sulfate and heparin, two sulfated glycosaminoglycans (GAGs), extracted collagen-tailed acetylcholinesterase (AChE) from the extracellular matrix (ECM) of the electric organ of Discopyge tschudii. The effect of heparan sulfate and heparin was abolished by protamine; other GAGs could not extract the esterase. The solubilization of the asymmetric AChE apparently occurs through the formation of a soluble AChE-GAG complex of 30S. Heparitinase treatment but not chondroitinase ABC treatment of the ECM released asymmetric AChE forms. This provides direct evidence for the vivo interaction between asymmetric AChE and heparan sulfate residues of the ECM. Biochemical analysis of the electric organ ECM showed that sulfated GAGs bound to proteoglycans account for 5% of the total basal lamina. Approximately 20% of the total GAGs were susceptible to heparitinase or nitrous acid oxidation which degrades specifically heparan sulfates, and approximately 80% were susceptible to digestion with chondroitinase ABC, which degrades chondroitin-4 and -6 sulfates and dermatan sulfate. Our experiments provide evidence that asymmetric AChE and carbohydrate components of proteoglycans are associated in the ECM; they also indicate that a heparan sulfate proteoglycan is involved in the anchorage of the collagen-tailed AChE to the synaptic basal lamina.  相似文献   

5.
The cholinesterases are members of the serine hydrolase family, which utilizes a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.  相似文献   

6.
At cholinergic synapses, acetylcholinesterase (AChE) is critical for ensuring normal synaptic transmission. However, little is known about how this enzyme is maintained and regulated in vivo. In this work, we demonstrate that the dissociation of fluorescently-tagged fasciculin 2 (a specific and selective peptide inhibitor of AChE) from AChE is extremely slow. This fluorescent probe was used to study the removal and insertion of AChE at individual synapses of living adult mice. After a one-time blockade of AChEs with fluorescent fasciculin 2, AChEs are removed from synapses initially at a faster rate (t(1/2) of approximately 3 days) and later at a slower rate (t(1/2) of approximately 12 days). Most of the removed AChEs are replaced by newly inserted AChEs over time. However, when AChEs are continuously blocked with fasciculin 2, the removal rate increases substantially (t(1/2) of approximately 12 h), and most of the lost AChEs are not replaced by newly inserted AChE. Furthermore, complete one-time inactivation of AChE activity significantly increases the removal of postsynaptic nicotinic acetylcholine receptors (AChRs). Finally, time lapse imaging reveals that synaptic AChEs and AChRs that are removed from synapses are co-localized in the same pool after being internalized. These results demonstrate a remarkable AChE dynamism and argue for a potential link between AChE function and postsynaptic receptor lifetime.  相似文献   

7.
杨磊  张学军 《生命科学》2002,14(4):201-203
乙酰胆碱酯酶(acetylcholinesterase,AChE)是主要存在于神经系统的一种水解酶,其经典功能是水解神经递质乙酰胆碱,从而终止神经冲动的传递。但是近年来,研究者发现许多证据表明它具有“非经典”的新功能,引起了人们的关注。除了水解神经递质乙酰胆碱的经典功能外,AChE对神经细胞的分化、迁移,突触的形成,造血系细胞和肿瘤细胞的增殖与分化调控也有作用。最近的研究结果显示:AChE可能在细胞凋亡过程中起重要作用,这对于认识Alzheimer‘s疾病(AD)的发病机理又有新的进步。  相似文献   

8.
Acetylcholinesterase (AChE) plays a key role in terminating neurotransmission at cholinergic synapses. AChE is also found in tissues devoid of cholinergic responses, indicating potential functions beyond neurotransmission. It has been suggested that AChE may participate in development, differentiation, and pathogenic processes such as Alzheimer's disease and tumorigenesis. We examined AChE expression in a number of cell lines upon induction of apoptosis by various stimuli. AChE is induced in all apoptotic cells examined as determined by cytochemical staining, immunological analysis, affinity chromatography purification, and molecular cloning. The AChE protein was found in the cytoplasm at the initiation of apoptosis and then in the nucleus or apoptotic bodies upon commitment to cell death. Sequence analysis revealed that AChE expressed in apoptotic cells is identical to the synapse type AChE. Pharmacological inhibitors of AChE prevented apoptosis. Furthermore, blocking the expression of AChE with antisense inhibited apoptosis. Therefore, our studies demonstrate that AChE is potentially a marker and a regulator of apoptosis.  相似文献   

9.
Chicken muscle and retina, and rat muscle asymmetric acetylcholinesterase (AChE) species were bound to immobilized heparin at 0.4 M NaCl. Binding efficiency was between 50 and 80% for crude fraction I A-forms (AI; muscle), and nearly 100% for fraction II A-forms (AII; muscle and retina). Antibody-affinity-purified AI-forms (chicken) were, however, quantitatively bound to heparin-agarose gels, whereas diisopropylfluorophosphate-inactivated high-salt extracts partially prevented the binding of both AI and AII AChE forms, thus suggesting the presence in crude AI extracts of heparin-like molecules interfering with the tail-heparin interaction. All bound A-forms were progressively displaced from the heparin-agarose columns by increasing salt concentrations, with maximal release at about 0.6 M. They were also efficiently eluted by heparin solutions (1 mg/ml), other glycosaminoglycans being much less effective. Chicken globular AChE forms (G-forms, both low-salt-soluble and detergent-soluble) also bound to immobilized heparin in the absence of salt. Stepwise elution with increasing NaCl concentrations showed maximal release of G-forms at 0.15 M, all globular forms being totally displaced from the column at 0.4 M NaCl. Heparin (1 mg/ml) had the same eluting capacity as 0.4 M NaCl, whereas other glycosaminoglycans were only marginally effective. We conclude that the molecular forms of AChE in these vertebrate species interact with heparin, at salt concentrations that are characteristic for asymmetric and globular forms. Within the A and G molecular form groups, no differences were found in the behavior of the different fractions or subtypes, provided that the enzyme samples were free of interfering molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.  相似文献   

11.
Summary To further evaluate the role of autonomic ganglia in the regulation of pelvic visceral activity, the neural elements in the major pelvic ganglion of the male rat have been studied with histochemical and electron microscopic techniques. The principal findings are that the ganglion is composed of cholinergic and adrenergic ganglion cells as well as small intensely fluorescent (SIF) cells. Polarity in the ganglion is indicated by clustering of small ganglion cells which stain intensely for acetylcholinesterase (AChE) along the pelvic nerve while larger cells, with weak to moderate AChE activity, collect near small branches of the hypogastric nerve. Some cholinergic ganglion cells are enclosed by a plexus of adrenergic terminals. SIF cells appear to be in contact with both cholinergic and adrenergic cells, although many of the fluorescent beads around adrenergic neurons may be short dendrites of ganglion cells, rather than processes of SIF cells. Two types of SIF cells may be distinguished on the basis of size and morphology of their granulated vesicles. Afferent synapses of the cholinergic type were common on SIF cells of the large granule and small granule type. Portions of SIF cells with large granules occur within the capsule of ganglion cells. Contacts seen here were interpreted as efferent synapses from SIF cells to the dendrites of ganglion cells.  相似文献   

12.
Acetylcholinesterase (AChE) occurs in both asymmetric forms, covalently associated with a collagenous subunit called Q (ColQ), and globular forms that may be either soluble or membrane associated. At the skeletal neuromuscular junction, asymmetric AChE is anchored to the basal lamina of the synaptic cleft, where it hydrolyzes acetylcholine to terminate synaptic transmission. AChE has also been hypothesized to play developmental roles in the nervous system, and ColQ is also expressed in some AChE-poor tissues. To seek roles of ColQ and AChE at synapses and elsewhere, we generated ColQ-deficient mutant mice. ColQ-/- mice completely lacked asymmetric AChE in skeletal and cardiac muscles and brain; they also lacked asymmetric forms of the AChE homologue, butyrylcholinesterase. Thus, products of the ColQ gene are required for assembly of all detectable asymmetric AChE and butyrylcholinesterase. Surprisingly, globular AChE tetramers were also absent from neonatal ColQ-/- muscles, suggesting a role for the ColQ gene in assembly or stabilization of AChE forms that do not themselves contain a collagenous subunit. Histochemical, immunohistochemical, toxicological, and electrophysiological assays all indicated absence of AChE at ColQ-/- neuromuscular junctions. Nonetheless, neuromuscular function was initially robust, demonstrating that AChE and ColQ do not play obligatory roles in early phases of synaptogenesis. Moreover, because acute inhibition of synaptic AChE is fatal to normal animals, there must be compensatory mechanisms in the mutant that allow the synapse to function in the chronic absence of AChE. One structural mechanism appears to be a partial ensheathment of nerve terminals by Schwann cells. Compensation was incomplete, however, as animals lacking ColQ and synaptic AChE failed to thrive and most died before they reached maturity.  相似文献   

13.
Acetylcholinesterase (AChE) is an enzyme that terminates acetylcholine neurotransmitter function at the synaptic cleft of cholinergic synapses. However, the mechanism by which AChE number and density are maintained at the synaptic cleft is poorly understood. In this work, we used fluorescence recovery after photobleaching, photo-unbinding, and quantitative fluorescence imaging to investigate the surface mobility and stability of AChE at the adult innervated neuromuscular junction of living mice. In wild-type synapses, we found that nonsynaptic (perisynaptic and extrasynaptic) AChEs are mobile and gradually recruited into synaptic sites and that most of the trapped AChEs come from the perijunctional pool. Selective labeling of a subset of synaptic AChEs within the synapse by using sequential unbinding and relabeling with different colors of streptavidin followed by time-lapse imaging showed that synaptic AChEs are nearly immobile. At neuromuscular junctions of mice deficient in alpha-dystrobrevin, a component of the dystrophin glycoprotein complex, we found that the density and distribution of synaptic AChEs are profoundly altered and that the loss rate of AChE significantly increased. These results demonstrate that nonsynaptic AChEs are mobile, whereas synaptic AChEs are more stable, and that alpha-dystrobrevin is important for controlling the density and stability of AChEs at neuromuscular synapses.  相似文献   

14.
The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine. In addition, AChE is thought to play several 'non-classical' roles that do not require catalytic function. Most prominent among these is facilitation of neurite growth. Here, we report that the zebrafish zieharmonika (zim) locus encodes AChE. We show that one mutant zim allele is caused by a pre-mature stop codon, resulting in a truncated protein that lacks both the catalytic site and the carboxy-terminal neuritogenic domain. To explore the 'non-classical' role of AChE, we examined embryos mutant for this allele. In contrast to previous results using a catalytic-inactive allele, our analysis demonstrates that AChE is dispensable for muscle fiber development and Rohon-Beard sensory neuron growth and survival. Moreover, we show that in the absence of AChE, acetylcholine receptor clusters at neuromuscular junctions initially assemble, but that these clusters are not maintained. Taken together, our results demonstrate that AChE is dispensable for its proposed non-classical roles in muscle fiber formation and sensory neuron development, but is crucial for regulating the stability of neuromuscular synapses.  相似文献   

15.
Abstract: We adapted a method, originally described by Israel et al. (1976) for the preparation of cholinergic nerve endings from Torpedo , to deal with a larger quantity of electric tissue. We followed the distribution of acetylcholine (ACh), ATP, acetylcholine receptor (AChR), choline acetyltransferase (ChAT), ouabainresistant and -sensitive ATPase, lactate dehydrogenase (LDH) and acetylcholinesterase (AChE) and obtained a nerve ending fraction, without detectable contamination by postsynaptic components. This preparation consisted of closed structures of 1–5 μm diameter, containing synaptic vesicles. It had the capacity to synthetize and release ACh. This preparation is therefore quite suitable for biochemical analysis of presynaptic elements. We particularly investigated its content of AChE: it consists exclusively of the 6S dimeric, hydrophobic form of the enzyme. This enzyme is enriched in the nerve ending preparation, by a factor higher than that obtained for ChAT. The yields obtained for the two enzymes suggest that the hydrophobic 6S AChE form may be mostly presynaptic in Torpedo electric organs. We characterized this form as a membrane-bound, externally active enzyme in the nerve ending preparation. It may thus participate in the hydrolysis of extracellularly liberated AChE and its abundance suggests that presynaptic AChE could play an essential role in cholinergic transmission in Torpedo electric organs and perhaps also in other cholinergic synapses.  相似文献   

16.
Acetylcholinesterase (AChE) is an enzyme broadly distributed in many species, including parasites. It occurs in multiple molecular forms that differ in their quaternary structure and mode of anchoring to the cell surface. This review summarizes biochemical and immunological investigations carried out in our laboratories on AChE of the helmint, Schistosoma mansoni. AChE appears in S. mansoni in two principal molecular forms, both globular, with sedimentation coefficients of approximately 6.5 and 8 S. On the basis of their substrate specificity and sensitivity to inhibitors, both are "true" acetylcholinesterases. Approximately half of the AChE activity of S. mansoni is located on the outer surface of the parasite, attached to the tegumental membrane via a covalently attached glycosylphosphatidylinositol anchor. The remainder is located within the parasite, mainly associated with muscle tissue. Whereas the internal enzyme is most likely involved in termination of neurotransmission at cholinergic synapses, the role of the surface enzyme remains to be established; there are, however, indications that it is involved in signal transduction. The two forms of AChE differ in their heparin-binding properties, only the internal 8 S form of the AChE being retained on a heparin column. The two forms differ also in their immunological specificity, since they are selectively recognized by different monoclonal antibodies. Polyclonal antibodies raised against S. mansoni AChE purified by affinity chromatography are specific for the parasite AChE, reacting with both molecular forms, but do not recognize AChE from other species. They interact with the surface-localized enzyme on the intact organism, and produce almost total complement-dependent killing of the parasite. S. mansoni AChE is thus demonstrated to be a functional protein, involved in multifaceted activities, which can serve as a suitable candidate for diagnostic purposes, vaccine development, and drug design.  相似文献   

17.
Molecular forms of acetylcholinesterases in Alzheimer's disease   总被引:2,自引:0,他引:2  
In this study, we examined 26 cases of Alzheimer's disease (AD) and 14 age-matched controls. In Brodmann area 21 cerebral cortex of the AD cases, there was no change in soluble G1 and G4 acetylcholinesterase (AChE) (EC 3.1.1.7), a significant 40% decrease in membrane-associated G4 AChE, significant 342 and 406% increases in A12 and A8 AChE, and a significant 71% decrease in choline acetyltransferase (ChAT) (EC 2.3.1.6). Our working hypothesis to account for these changes postulates that soluble globular forms are unchanged because they are primarily associated with intrinsic cortical neurons that are relatively unaffected by AD, that ChAT and membrane-associated G4 AChE decrease because they are primarily associated with incoming axons of cholinergic neurons that are abnormal in AD, and that asymmetric forms of AChE increase because of an acrylamide-type impairment of fast axonal transport in diseased incoming cholinergic axons. In the nucleus basalis of Meynert (nbM) of the 26 AD cases, there was a significant 61% decrease in the number of cholinergic neurons, an insignificant 23% decrease in nbM ChAT, a significant 298% increase in nbM ChAT per cholinergic neuron, and a significant 7% increase in the area of cholinergic perikarya. To account for the increased ChAT in cholinergic neurons and the enlargement of cholinergic perikarya, we propose that slow axonal transport may be impaired in nbM cholinergic neurons in AD.  相似文献   

18.
An ultrastructural, histochemical, and biochemical study of the electric organ of the South American Torpedinid ray, Discopyge tschudii, was carried out. Fine structural cytochemical localization of acetylcholinesterase (AChE) indicated that most of the esterase was associated with the basal lamina. Electron microscopy indicated no marked differences in the electrocyte ultrastructure between Discopyge and Torpedo californica. Discopyge electric organ possessed three molecular forms, two asymmetric forms (16 S and 13 S) and one globular hydrophobic form (6.5 S). The asymmetric 16 S AChE form was solubilized by heparin, a sulfated glycosaminoglycan, suggesting that heparin-like macromolecules are involved in the binding of the enzyme to the basal lamina. Our results show that cell-free translated AChE peptides, synthesized using Discopyge electric organ poly(A+) RNA, correspond to a main band of 62,000 daltons which probably represents the catalytic subunit of the asymmetric AChE.  相似文献   

19.
Acetylcholinesterase (AChE) hydrolyses acetylcholine (ACh) ensuring the fast clearance of released neurotransmitter at cholinergic synapses. Many studies led to the hypothesis that AChE and the closely related enzyme butyrylcholinesterase (BChE) may play other, non-hydrolytic roles during development. In this review, we compare data from in vivo studies performed on invertebrate and vertebrate genetic models. The loss of function of ache in these systems is responsible for the appearance of several phenotypes. In all aspects so far studied, the phenotypes can be explained by an excess of the undegraded substrate, ACh, leading to misfunction and pathological alterations. Thus, the lack of AChE catalytic activity in the mutants appears to be solely responsible for the observed phenotypes. None of them appears to require the postulated adhesive or other non-hydrolytic functions of AChE.  相似文献   

20.
Cholinesterases preceding major tracts in vertebrate neurogenesis   总被引:5,自引:0,他引:5  
The role of acetylcholinesterase (AChE) in neurotransmission is well known. But long before synapses are formed in vertebrates, AChE is expressed in young postmitotic neuroblasts that are about to extend the first long tracts. AChE histochemistry can thus be used to map primary steps of brain differentiation. Preceding and possibly inducing AChE in avian brains, the closely related butyrylcholinesterase (BChE) spatially foreshadows AChE-positive cell areas and the course of their axons. In particular, before spinal motor axons grow, their corresponding rostral sclerotomes and myotomes express BChE, and both their neuronal source and myotomal target cells express AChE. Since axon growth has been found inhibited by acetylcholine, it is postulated that both cholinesterases can attract neurite growth cones by neutralizing the inhibitor. Thus, the early expression of both cholinesterases that is at least partially independent from classical cholinergic synaptogenesis, sheds new light on the developmental and medical significance of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号