首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many Bacteroides clinical isolates contain large conjugative transposons, which excise from the genome of a donor and transfer themselves to a recipient by a process that requires cell-to-cell contact. It has been suggested that the transfer intermediate of the conjugative transposons is a covalently closed circle, which is transferred by the same type of rolling circle mechanism used by conjugative plasmids, but the transfer origin of a conjugative transposon has not previously been localized and characterized. We have now identified the transfer origin (oriT) region of one of the Bacteroides conjugative transposons, TcrEmr DOT, and have shown that it is located near the middle of the conjugative transposon. We have also identified a 16-kbp region of the conjugal transposon which is necessary and sufficient for conjugal transfer of the element and which is located near the oriT. This same region proved to be sufficient for mobilization of coresident plasmids and unlinked integrated elements as well as for self-transfer, indicating that all of these activities are mediated by the same transfer system. Previously, we had reported that disruption of a gene, rteC, abolished self-transfer of the element. rteC is one of a set of rte genes that appears to mediate tetracycline induction of transfer activities of the conjugative transposons. On the basis of these and other data, we had proposed that RteC activated expression of transfer genes. We have now found, however, that when the transfer region of TcrEmr DOT was cloned as a plasmid that did not contain rteC and the plasmid (pLYL72) was tested for transfer out of a Bacteroides strain that did not have a copy of rteC in the chromosome, the plasmid was self-transmissible without tetracycline induction. This and other findings suggest that RteC is not an activator transfer genes but is stimulating transfer in some other way.  相似文献   

2.
3.
4.
A 4.2-kb plasmid (pLV22a) native to Bacteroides fragilis LV22 became fused to a transfer-deficient Bacteroides spp.-Escherichia coli shuttle vector by an inverse transposition event, resulting in a transferrable phenotype. The transfer phenotype was attributable to pLV22a, which was also capable of mobilization within E. coli when coresident with the IncP beta R751 plasmid. Transposon mutagenesis with Tn1000 localized the mobilization region to a 1.5-kb DNA segment in pLV22a. The mobilization region has been sequenced, and five open reading frames have been identified. Mutants carrying disruptions in any of the three genes designated mbpA, mbpB, and mbpC and coding for deduced products of 11.3, 30.4, and 17.1 kDa, respectively, cannot be mobilized when coresident with R751. Mutations in all three genes can be complemented in the presence of the respective wild-type genes, indicating that the products of mbpA, mbpB, and mbpC have roles in the mobilization process and function in trans. The deduced 30.4-kDa MbpB protein contains a 14-amino-acid conserved motif that is also found in the DNA relaxases of a variety of conjugal and mobilizable plasmids and the conjugative transposon Tn4399. Deletion analysis and complementation experiments have localized a cis-acting region of pLV22a within mbpA.  相似文献   

5.
The conjugative transposon CTnDOT is virtually identical over most of its length to another conjugative transposon, CTnERL, except that CTnDOT carries an ermF gene that is not found on CTnERL. In this report, we show that the region containing ermF appears to consist of a 13-kb chimera composed of at least one class I composite transposon and a mobilizable transposon (MTn). Although the ermF region contains genes also carried on Bacteroides transposons Tn4351 and Tn4551, it does not contain the IS4351 element which is found on these transposons. In CTnDOT, insertion of the ermF region occurred near a stem-loop structure at the end of orf2, an open reading frame located immediately downstream of the integrase (int) gene of CTnDOT, and in a region known to be important for excision of CTnERL and CTnDOT. The chimera that comprises the ermF region can apparently no longer excise and circularize, but it contains a functional mobilization region related to that described for the Bacteroides MTn Tn4399. Analysis of 19 independent Bacteroides isolates showed that the ermF region is located in the same position in all of the strains analyzed and that the compositions of the ermF region are almost identical in these strains. Therefore, it appears that CTnDOT-like elements present in community and clinical isolates of Bacteroides were derived from a common ancestor and proliferated in the diverse Bacteroides population.  相似文献   

6.
Integrated self-transmissible elements called conjugative transposons have been found in many different bacteria, but little is known about how they excise from the chromosome to form the circular intermediate, which is then transferred by conjugation. We have now identified a gene, exc, which is required for the excision of the Bacteroides conjugative transposon, CTnDOT. The int gene of CTnDOT is a member of the lambda integrase family of recombinases, a family that also contains the integrase of the Gram-positive conjugative transposon Tn916. The exc gene was located 15 kbp from the int gene, which is located at one end of the 65 kbp element. The exc gene, together with the regulatory genes, rteA, rteB and rteC, were necessary to excise a miniature form of CTnDOT that contained only the ends of the element and the int gene. Another open reading frame (ORF) in the same operon and upstream of exc, orf3, was not essential for excision and had no significant amino acid sequence similarity to any proteins in the databases. The deduced amino acid sequence of the CTnDOT Exc protein has significant similarity to topoisomerases. A small ORF (orf2) that could encode a small, basic protein comparable with lambda and Tn916 excision proteins (Xis) was located immediately downstream of the CTnDOT int gene. Although Xis proteins are required for excision of lambda and Tn916, orf2 had no effect on excision of the element. Excision of the CTnDOT mini-element was not affected by the site in which it was integrated, another difference from Tn916. Our results demonstrate that the Bacteroides CTnDOT excision system is tightly regulated and appears to be different from that of any other known integrated transmissible element, including those of some Bacteroides mobilizable transposons that are mobilized by CTnDOT.  相似文献   

7.
S Trinh  A Haggoud    G Reysset 《Journal of bacteriology》1996,178(23):6671-6676
Three small 5-nitroimidazole (5-Ni) resistance plasmids (pIP417, pIP419, and pIP421) from Bacteroides clinical isolates are transferable by a conjugative process during homologous or heterologous matings. The mobilization properties of pIP417 originated from strain BV-17 of Bacteroides vulgatus were studied. The plasmid was successfully introduced by in vitro conjugation into different strains of Bacteroides and Prevotella species and could be transferred back from these various strains to a plasmid-free 5-Ni-sensitive Bacteroides fragilis strain, indicating that in vivo spread of the resistance gene may occur. The transfer of plasmid pIP417 harbored by the Tc(r) strain BF-2 of B. fragilis was stimulated by low concentrations of tetracycline or chlorotetracycline. This suggests a possible role for coresident conjugative transposons in the dissemination of 5-Ni resistance among gram-negative anaerobes. The nucleotide sequence of the 2.1-kb DNA mobilization region was determined. It contains a putative origin of transfer (oriT) in an A+T-rich-region, including three inverted repeats, and two integration host factor binding sites. The two identified mobilization genes (mobA and mobB) are organized in one operon and were both required for efficient transfer. Southern blotting indicated that the mobilization region of plasmid pIP417 is closely related to that of both the erythromycin resistance plasmid pBFTM1O and the 5-Ni resistance plasmid pIP419 but not to that of the 5-Ni resistance plasmid pIP421.  相似文献   

8.
9.
10.
Four genes have been found to be essential for excision of the Bacteroides conjugative transposon CTnDOT in vivo: intDOT, orf2c, orf2d, and exc. The intDOT gene encodes an integrase that is essential for integration and excision. The function of the other genes is still uncertain. Previously, we developed an in vitro system for the integration reaction. We have now developed an in vitro system for excision. In this system, the left and right junctions of CTnDOT, attL, and attR, are provided on separate plasmids. The excision reaction produced a cointegrate which contained the attDOT (the joined ends of CTnDOT) and attB (the chromosomal target site). Cointegrate formation was observed after electroporation of Escherichia coli with the assay mixture and was also detected directly in the assay mixture by Southern hybridization. The highest reaction frequencies (10(-3)) were obtained with a mixture that contained purified IntDOT and a cell extract from Bacteroides thetaiotaomicron 4001, which contained the excision region of CTnDOT carried on a plasmid. An unexpected finding was that the addition of purified Exc, which is essential for excision in vivo, was not required for excision in vitro, nor did it increase the frequency of cointegrate formation.  相似文献   

11.
The conjugative plasmid pCF-10 (58 kb) of Streptococcus faecalis has been mapped with restriction enzymes. By restriction mapping and Southern hybridization analysis, a 16-kb segment of the plasmid was shown to resemble closely the conjugative tetracycline resistance transposon, Tn916. Mutagenesis of the plasmid with the erythromycin resistance transposon Tn917 was used to localize a tetracycline resistance determinant and several regions involved in conjugal transfer. Fifty Tn917 insertions (outside the region of the plasmid homologous to Tn916) affecting mating behavior and the ability of donor cells to respond to the sex pheromone cCF-10 were mapped to nine distinct segments, or tra regions. Insertions into tra regions 1-3 and 7-9 led to an enhanced transfer ability of mutant plasmids relative to the transfer frequency obtained for the wild-type plasmid. Cells carrying these mutant plasmids differed in colony morphology or growth in broth culture from cells carrying pCF-10. Insertions into tra regions 4-6 resulted in reduced plasmid transfer, or completely eliminated the mating potential of donor cells. Insertions generating transfer-defective plasmids could be grouped further according to the ability of strains harboring the mutant plasmids to respond to cCF-10. HindIII fragments of pCF-10 coding for transfer functions have been cloned into Escherichia coli.  相似文献   

12.
13.
Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.  相似文献   

14.
Aims:  The tet (X) gene has previously been found in obligate anaerobic Bacteroides spp., which is curious because tet (X) encodes for a NADP-dependent monooxygenase that requires oxygen to degrade tetracycline. In this study, we characterized a tetracycline resistant, aerobic, Gram-negative Sphingobacterium sp. strain PM2-P1-29 that harbours a tet (X) gene.
Methods and Results:  Sphingobacterium sp. PM2-P1-29 demonstrated the ability to transform tetracycline compared with killed controls. The presence of the tet (X) gene was verified by PCR and nucleotide sequence analysis. Additional nucleotide sequence analysis of regions flanking the tet (X) gene revealed a mobilizable transposon-like element (Tn 6031 ) that shared organizational features and genes with the previously described Bacteroides conjugative transposon CTnDOT. A circular transposition intermediate of the tet (X) region, characteristic of mobilizable transposons, was detected. However, we could not demonstrate the conjugal transfer of the tet (X) gene using three different recipient strains and numerous experimental conditions.
Conclusions:  This study suggests that Sphingobacterium sp. PM2-P1-29 or a related bacterium may be an ancestral source of the tet (X) gene.
Significance and Impact of the Study:  This study demonstrates the importance of environmental bacteria and lateral gene transfer in the dissemination and proliferation of antibiotic resistance among bacteria.  相似文献   

15.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

16.
Foreign DNA elements such as plasmids and conjugative transposons are constantly entering new bacterial hosts. A possible outcome of such events that has not been considered previously is that regulatory genes carried on some of them might affect the expression of chromosomal genes of the new host. To assess this possibility, we investigated the effect of the Bacteroides conjugative transposon CTnDOT on expression of chromosomal genes in Bacteroides thetaiotaomicron 5482 (BT4001). Most of the upregulated genes were genes of unknown function, but a number of them were associated with a region of the chromosome that contained a putative conjugative transposon, which had been tentatively designated as CTn4-bt. Upregulation of CTn4-bt genes and other chromosomal genes affected by CTnDOT was controlled by two regulatory genes on CTnDOT, rteA and rteB, which encode a two-component regulatory system. Transfer of CTn4-bt was also mediated by rteA and rteB. Three other putative CTns, CTn1-bt, CTn2-bt and CTn3-bt, were mobilized by CTnERL, a CTn closely related to CTnDOT, but genes from CTnERL other than rteA and rteB were also required. Unexpectedly, homologous recombination was required for CTn1-bt, CTn2-bt, CTn3-bt and CTn4-bt to integrate in the recipient. Our results show that regulatory genes on an incoming mobile element can have multiple effects on its new host, including the activation of previously non-transmissible elements.  相似文献   

17.
The tetQ-rteA-rteB operon of the Bacteroides conjugative transposon CTnDOT is responsible for tetracycline control of the excision and transfer of CTnDOT. Previous studies revealed that tetracycline control of this operon occurred at the translational level and involved a hairpin structure located within the 130-base leader sequence that lies between the promoter of tetQ and the start codon of the gene. This hairpin structure is formed by two sequences, designated Hp1 and Hp8. Hp8 contains the ribosome binding site for tetQ. Examination of the leader region sequence revealed three sequences that might encode a leader peptide. One was only 3 amino acids long. The other two were 16 amino acids long. By introducing stop codons into the peptide coding regions, we have now shown that the 3-amino-acid peptide is the one that is essential for tetracycline control. Between Hp1 and Hp8 lies an 85-bp region that contains other possible RNA hairpin structures. Deletion analysis of this intervening DNA segment has now identified a sequence, designated Hp2, which is essential for tetracycline regulation. This sequence could form a short hairpin structure with Hp1. Mutations that made the Hp1-Hp2 structure more stable caused nearly constitutively high expression of the operon. Thus, stalling of ribosomes on the 3-amino-acid leader peptide could favor formation of the Hp1-Hp2 structure and thus preclude formation of the Hp1-Hp8 structure, releasing the ribosome binding site of tetQ. Finally, comparison of the CTnDOT tetQ leader regions with upstream regions of five tetQ genes found in other elements reveals that the sequences are virtually identical, suggesting that translational attenuation is responsible for control of tetracycline resistance in these other cases as well.  相似文献   

18.
19.
pBF4 is a 42-kb R plasmid from Bacteroides fragilis which transfers clindamycin resistance (Clr) independently of the chromosomal tetracycline resistance (Tcr) transfer element. We have found that this plasmid exists in two nonequimolar conformations, A and B. These forms differ by an inversion of approximately 11.5 kb which does not involve the repeated DNA sequences previously mapped on the plasmid. The presence of chromosomal tetracycline resistance conjugal elements influences the relative amounts of the two conformations: induction with tetracycline shifts the dominant form from B to A.  相似文献   

20.
A Bacteroides conjugative transposon (CTn), CTn12256, which has an estimated size of more than 150 kbp appeared to contain most or all of a previously discovered 65 kbp CTn, CTnDOT. To determine whether the integrated CTnDOT was still intact and to identify the element into which CTnDOT had integrated, large segments of CTn12256 were cloned and sequenced. Results of this analysis revealed that an intact CTnDOT type CTn had integrated into another CTn that was most closely related to a putative CTn found in the genome sequence of Bacteroides fragilis YCH46 (CTn3Bf). The CTnDOT portion of CTn12256 (CTnDOT2) proved to be capable of excising from CTn12256 and to transfer itself independently of CTn12256. The CTn3Bf region rarely transferred independently of CTnDOT2, and the transferred CTn3Bf contained a large deletion flanking the site of CTnDOT2 insertion and was no longer transmissible. Nonetheless, genetic analysis showed that the CTn3Bf portion controls transfer of CTn12256.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号