首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miguel Tejedo 《Oecologia》1992,90(2):294-296
Summary A trade-off between size and number of offspring was not found for females of similar sizes of the natterjack toad (Bufo calamita). Moreover, for large females, clutches with higher number of eggs had larger eggs as well. This suggests that larger females produce more numerous and larger eggs because they potentially have more energy available for reproduction. Egg size diminished allometrically with clutch size. Egg size, however, did not increase offspring fitness. Therefore, this allometric decrease may be considered a consequence of phylogenetic constraints rather than a result of optimizing selection.  相似文献   

2.
3.
4.
To analyse the effects of current income on the nature of size-number trade-off and optimal offspring size, we developed a model in which offspring grow by absorbing current income and reserves. The offspring continue to grow while the current income is available or the reserves exist, and they cease to grow when the reserves are depleted and the current income ceases. We showed that the size-number trade-off is nonlinear in the region where the number of offspring is smaller than the critical number and linear in the region where the number of offspring is greater than the critical number. In the former region, the reserves are not depleted by the time the current income ceases and the offspring cease to grow when the reserves are depleted, whereas in the latter region, the reserves are depleted before the current income ceases and the offspring production is completed when the current income ceases. The optimal offspring size is the same as that shown in Sakai and Harada (Evolution 55 (2001) 467) if this optimal size is realized in the region of nonlinear trade-off, whereas the optimal offspring size is the same as that shown in Smith and Fretwell (Am. Natur. 108 (1974) 499) if this optimal size is realized in the region of linear trade-off.  相似文献   

5.
6.
Gravid females of Ormia ochracealocate their hosts by homing on their hosts' calling songs. At Gainesville, Florida, O. ochraceafemales were attracted in greatest numbers to broadcast sounds that simulated the calling song of Gryllus rubens.Other candidate hosts and the attractiveness of their songs relative to the simultaneous song of G. rubenswere G. fultoni(9%), G. integer(4%), G. firmus(3%), Orocharis luteolira(1%), Scapteriscus borellii(1%), and S. vicinus(0%). The response of female O. ochraceato simulated G. rubenssongs that have different pulse rates changes with temperature in parallel with temperature-induced changes in the pulse rate of natural songs. Speaker stations 16 m apart in an apparently uniform environment produced strikingly different fly counts (e.g., 852 and 2163). The song of G. rubensat 21 °C approximates a continuous sequence of 4.6-kHz pulses at a rate of 45 s –1 and with a duty cycle of 50%. When two of these parameters were held constant and the third systematically varied in steps of 0.4kHz, 10s –1,and 10–20%, maximum attraction occurred at 4.4 kHz, 45 s –1,and 20–80%. Omitting as many as half the pulses in a rubenssimulation (e.g., 1, 2, 4, or 16 pulses followed by an equivalent silence, and repeat) did not significantly reduce the counts of O. ochracea,proving that chirping (producing pulses in brief groups) is no safeguard from call-seeking O. ochracea.Phase shifting of pulses in successive chirps sometimes decreased fly counts. When songs were first broadcast, flies came within seconds. Flies that landed at sound often stayed for minutes, even when the sound was turned off.  相似文献   

7.
Summary The effect is modeled of a positive relationship between clutch size and offspring fitness on the optimal investment in offspring. In species which meet the assumptions of the model, the model predicts a positive correlation between maternal resource level and offspring size. If larger mothers are able to allocate more resources to offspring, then the model would also predict a positive correlation between maternal size and offspring size when the assumptions of the model are met. Thus, this model may help explain both among and within individual variation in offspring size. When offspring are produced in groups and the number of offspring killed per clutch is limited by predator satiation, offspring in larger clutches may experience a higher probability of survival. Such a life style may be found in animals such as sea turtles. Offspring size is positively correlated with maternal size in some members of this group.  相似文献   

8.
Snakes are free of the pelvic girdle's constraint on maximum offspring size, and therefore present an opportunity to investigate the upper limit to offspring size without the limit imposed by the pelvic girdle dimension. We used the king ratsnake (Elaphe carinata) as a model animal to examine whether follicle ablation may result in enlargement of egg size in snakes and, if so, whether there is a fixed upper limit to egg size. Females with small sized yolking follicles were assigned to three manipulated, one sham-manipulated and one control treatments in mid-May, and two, four or six yolking follicles in the manipulated females were then ablated. Females undergoing follicle ablation produced fewer, but larger as well as more elongated, eggs than control females primarily by increasing egg length. This finding suggests that follicle ablation may result in enlargement of egg size in E. carinata. Mean values for egg width remained almost unchanged across the five treatments, suggesting that egg width is more likely to be shaped by the morphological feature of the oviduct. Clutch mass dropped dramatically in four- and six-follicle ablated females. The function describing the relationship between size and number of eggs reveals that egg size increases with decreasing clutch size at an ever-decreasing rate, with the tangent slope of the function for the six-follicle ablation treatment being -0.04. According to the function describing instantaneous variation in tangent slope, the maximum value of tangent slope should converge towards zero. This result provides evidence that there is a fixed upper limit to egg size in E. carinata.  相似文献   

9.
Relationships between egg size, egg components, and neonate size have been investigated across a wide range of oviparous taxa. Differences in egg traits among taxa reflect not only phylogenetic differences, but also interactions between biotic (i.e., maternal resource allocation) and abiotic (i.e. nest environment conditions) factors. We examined relationships between egg mass, egg composition, and hatchling size in leatherback turtles (Dermochelys coriacea) because of the unique egg and reproductive characteristics of this species and of sea turtles in general. Albumen comprised 63.0%+/-2.8% (mean+/-S.D.) of egg mass and explained most of the variation in egg mass, whereas yolk comprised only 33.0%+/-2.7%. Additionally, leatherback albumen dry mass was approximately 16% of albumen wet mass. Whereas hatchling mass increased significantly with egg mass (n = 218 clutches), hatchling mass increased by only approximately 2 g for each 10 g increase in egg mass and was approximately 10-20 g greater than yolk mass. Taken together, our results indicate that albumen might play a particularly significant role in leatherback embryonic development, and that leatherback eggs are both capable of water uptake from the nest substrate and also possess a large reservoir of water in the albumen. Relationships between egg mass and egg components, such as variation in egg mass being largely explained by variation in albumen mass and egg mass containing a relatively high proportion of albumen solids, are more similar to bird eggs than to eggs of other non-avian reptiles. However, hatchling mass correlates more with yolk mass than with albumen mass, unlike patterns observed in bird eggs of similar composition.  相似文献   

10.
Few studies of invertebrates have considered combinations of morphological and life history traits in the context of the evolution of reproductive strategies. Cricket species that exploit habitats harsh with respect to egg survival have evolved a long ovipositor, presumably because laying deep in the soil reduces egg mortality. Yet hatchling mortality increases with laying depth, and the ability of hatchlings to climb through the soil increases with egg size. Thus a conflict may exist between survival of the egg and that of the hatchling, inducing a positive covariation between egg size and ovipositor length across species evolving under contrasting selective habitats. We used the phylogenetic autocorrelation method and a path analysis to assess whether egg size coevolved with ovipositor length across 40 species of crickets, and whether egg size was affected by body size or ecological factors that influence egg mortality. Body size and ovipositor length were affected by taxonomic association, whereas common ancestry had no significant effect on egg size, diapausing strategy, and oviposition preference for soil types. The path model indicated that 29.11% of the variance in egg size was explained by independent evolution. As expected, ovipositor length was positively correlated with egg size, and species diapausing in the egg stage produced larger eggs than crickets diapausing in the nymphal stage or with no diapause. Ovipositor length and diapausing strategy were the first and second most important traits, respectively, in term of the proportion of variance in egg size explained by specific values. These results support the hypothesis that the ability of hatchlings to climb through the soil, and variation in diapause strategies, are general selective factors affecting the evolution of egg size in crickets. Phylogeny explained 51.01% of the variance in egg size. Egg size in a current cricket species, however, was not directly determined by egg size in its ancestor. Instead, it was strongly related to the phylogenetic values of body size and ovipositor length. Such indirect phylogenetic effects of body size and ovipositor length may have arisen because clades originating from ancestors with different ovipositor lengths experienced different selective pressures on egg size. Recelived: 13 October 1995 / Accepted: 30 September 1996  相似文献   

11.
Summary We extend the classical Smith-Fretwell model for the optimal size of an offspring to the case of allocation of two or more fitness enhancing resources. Unlike the results of the single-resource model, the new model predicts that the optimal allocations will depend on the resource pool sizes. We apply this new model to the problem of carbon and nitrogen allocation to seeds and conclude (1) that the optimal seed size (carbon allocation) should be positively correlated with the ratio of the size of the carbon and nitrogen pools available for investment to offspring (C/N ratio) and (2) that there should be a negative correlation between seed size and absolute seed nitrogen content. These results may account for some of the within- and between-plant variation in resource allocation to seeds.  相似文献   

12.
Life-history theory posits a fundamental trade-off between number and size of offspring that structures the variability in parental investment across and within species. We investigate this 'quantity-quality' trade-off across primates and present evidence that a similar trade-off is also found across natural-fertility human societies. Restating the classic Smith-Fretwell model in terms of allometric scaling of resource supply and offspring investment predicts an inverse scaling relation between birth rate and offspring size and a (-1/4) power scaling between birth rate and body size. We show that these theoretically predicted relationships, in particular the inverse scaling between number and size of offspring, tend to hold across increasingly finer scales of analyses (i.e. from mammals to primates to apes to humans). The advantage of this approach is that the quantity-quality trade-off in humans is placed into a general framework of parental investment that follows directly from first principles of energetic allocation.  相似文献   

13.
14.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

15.
An increase in brain size is a hallmark of human evolution. Questions regarding the evolution of brain development and obstetric constraints in the human lineage can be addressed with accurate estimates of the size of the brain at birth in hominins. Previous estimates of brain size at birth in fossil hominins have been calculated from regressions of neonatal body or brain mass to adult body mass, but this approach is problematic for two reasons: modern humans are outliers for these regressions, and hominin adult body masses are difficult to estimate. To accurately estimate the brain size at birth in extinct human ancestors, an equation is needed for which modern humans fit the anthropoid regression and one in which the hominin variable entered into the regression equation has limited error. Using phylogenetically sensitive statistics, a resampling approach, and brain-mass data from the literature and from National Primate Research Centers on 362 neonates and 2802 adults from eight different anthropoid species, we found that the size of the adult brain can strongly predict the size of the neonatal brain (r2 = 0.97). This regression predicts human brain size, indicating that humans have precisely the brain size expected as an adult given the size of the brain at birth. We estimated the size of the neonatal brain in fossil hominins from a reduced major axis regression equation using published cranial capacities of 89 adult fossil crania. We suggest that australopiths gave birth to infants with cranial capacities that were on average 180 cc (95% CI: 158–205 cc), slightly larger than the average neonatal brain size of chimpanzees. Neonatal brain size increased in early Homo to 225 cc (95% CI: 198–257 cc) and in Homo erectus to approximately 270 cc (95% CI: 237–310 cc). These results have implications for interpreting the evolution of the birth process and brain development in all hominins from the australopiths and early Homo, through H. erectus, to Homo sapiens.  相似文献   

16.
The problem of optimal clutch sizes is a central theme in life history theory. Optimal allocation of eggs is especially complicated for insects in tritrophic systems. In this study we analyze some of the processes determining clutch sizes of the thistle gallfly Urophora cardui, a monophagous tephritid fly associated with Cirsium arvense. U. cardui forms multilocular shoot galls, which vary broadly in their size and number of their gall cells. We investigate various fitness consequences of gall size. An analysis of the number of cells per gall (which is correlated with gall diameter and gall weight) showed that in U. cardui there is mutual facilitation rather than larval competition. Increasing numbers of larvae per gall led to a decreasing mortality and increasing larval weight. Larval weight in turn was positively correlated with the probability of survival to adulthood and with adult weight and fecundity. Thus, all fitness parameters measured favoured large galls. Clutch sizes in oviposition experiments were distinctly larger than the number of gall cells of field populations and in cage experiments, suggesting high mortality of eggs and/or early larval instars. There was a significant relationship between the internal structure (i.e., the size of the growing point) of the bud and clutch size, suggesting that U. cardui females are able to measure bud quality and adapt clutch sizes accordingly. Clutch size was positively correlated with the female's age at first oviposition and negatively with the number of previous ovipositions and previously laid eggs. Since the potential egg capacity per female is higher than the average number of larvae it is likely to produce during its short adult lifespan, U. cardui females tend to be time-limited rather than egglimited, which might favour large clutches once an appropriate oviposition site has been located. As the development of the gall and hence the fate of a clutch depends on a number of unpredictable factors, exclusive concentration of eggs in a few large clusters would involve risks which could be avoided by increasing the number of clutches. Therefore we interpret the high variation of clutch sizes in U. cardui as a mixed strategy of bet hedging and gambling.  相似文献   

17.
The evolution of investment per offspring (I) is often viewed through the lens of the classic theory, in which variation among individuals in a population is not expected. A substantial departure from this prediction arises in the form of correlations between maternal body size and I, which are observed within populations in virtually all taxonomic groups. Based on the generality of this observation, we suggest it is caused by a common underlying mechanism. We pursue a unifying explanation for this pattern by reviewing all theoretical models that attempt to explain it. We assess the generality of the mechanism upon which each model is based, and the extent to which data support its predictions. Two classes of adaptive models are identified: models that assume that the correlation arises from maternal influences on the relationship between I and offspring fitness [w(I)], and those that assume that maternal size influences the relationship between I and maternal fitness [W(I)]. The weight of evidence suggests that maternal influences on w(I) are probably not very general, and even for taxa where maternal influences on w(I) are likely, experiments fail to support model predictions. Models that assume that W(I) varies with maternal size appear to offer more generality, but the current challenge is to identify a specific and general mechanism upon which W(I) varies predictably with maternal size. Recent theory suggests the exciting possibility that a yet unknown mechanism modifies the offspring size–number trade‐off function in a manner that is predictable with respect to maternal size, such that W(I) varies with size. We identify two promising avenues of inquiry. First, the trade‐off might be modified by energetic costs that are associated with the initiation of reproduction (‘overhead costs’) and that scale with I, and future work could investigate what specific overhead costs are generally associated with reproduction and whether these costs scale with I. Second, the trade‐off might be modified by virtue of condition‐dependent offspring provisioning coupled with metabolic factors, and future work could investigate the proximate cause of, and generality of, condition‐dependent offspring provisioning. Finally, drawing on the existing literature, we suggest that maternal size per se is not causatively related to variation in I, and the mechanism involved in the correlation is instead linked to maternal nutritional status or maternal condition, which is usually correlated with maternal size. Using manipulative experiments to elucidate why females with high nutritional status typically produce large offspring might help explain what specific mechanism underlies the maternal‐size correlation.  相似文献   

18.
19.
The time that male field crickets spend calling was measured electronically in the laboratory to examine nightly calling duration from different species and populations. Male Gryllus integerfrom Davis, CA, and Las Cruces, NM, called approximately 7 h per 24 h, whereas male G. integerfrom San Antonio and Austin, TX, and Norman, OK, and male G. rubensfrom McAlester, OK, and Arkadelphia, AR, called approximately 3 h per 24 h. Variation in duration of calling is discussed in terms of the energetic costs of producing song and selection against calling by acoustically orienting parasites and predators. Duration of calling was also studied infield-collected male G. integer.Males were first observed in field populations and then collected. Those males observed calling in the field later called significantly more in the laboratory than males observed showing non-calling, satellite behavior. Flying G. integercollected under lights were intermediate in their calling duration to calling and satellite males. These data are discussed in terms of the heritability of nightly calling song duration infield crickets.  相似文献   

20.
The general female bias in body size of animals is usually attributed to fecundity selection. While many studies have demonstrated a positive relationship between body size and fecundity, the most common interpretation of fecundity selection is that larger females have larger abdomens and can hold more eggs, yet the relationship between abdomen size and fecundity has rarely been examined. For the waterstrider, Aquarius remigis, we find a significant relationship between body size and fecundity and demonstrate that the target of fecundity selection is abdomen size. Thus, larger females have higher fecundities because they have larger abdomens and not because of their total size per se. The rate at which fecundity increases with increasing abdomen size exceeds that which would be expected due to a simple volume constraint and suggests that other factors, such as increased ability to obtain resources, may contribute to the increase in fecundity with body size. Selection intensities estimated from our data indicate that fecundity selection could be a significant selective force on both total and abdomen lengths. Previous studies have found that abdomen size increased faster than body size and thus, larger females had relatively larger abdomens. The relationship of abdomen length and thorax length in A. remigis is hypoallometric and indicates that larger females have relatively smaller abdomens. We hypothesize that this may reflect conservation of abdomen size in females developing under poor conditions. Finally, while egg size is not directly related to body size, we find a trade-off between egg size and number when female abdomen length is held constant, suggesting that selection on egg size may influence abdomen length only indirectly through its effects on fecundity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号