首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu-->Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu-->Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond theta = .10 for the Volga German kindreds, theta = .20 for early-onset non-Volga Germans, and theta = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds.  相似文献   

2.
We used heteroduplex analysis to screen for mutations in the porphobilinogen deaminase gene in 21 patients with acute intermittent porphyria (AIP). Unique banding patterns were investigated by direct sequencing of polymerase chain reaction products and, when indicated, sequencing of cloned DNA containing the exon of interest. Two frameshift mutations were found, a 2-bp deletion in exon 5 and a 1-bp insertion in exon 7. Both mutations generate a premature stop codon. Two point mutations, in exons 10 and 14, were also observed. The CT mutation in exon 10 codes for an Arg173 to Trp substitution, while a GA mutation in exon 14 changes Trp283 into a premature stop codon. This study extends the spectrum of mutations that cause AIP and demonstrates the utility of heteroduplex analysis as a screening technique.  相似文献   

3.
A genetic polymorphism of the inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1) was analyzed at the nucleic acid level. Three common alleles, ITIH1*1, ITIH1*2 and ITIH1*3, were characterized by mutations at codons 551 and 561 in exon 14. ITIH1*1 was characterized by GAG (Glu) at codon 551 and CAG (Gln) at codon 561, ITIH1*2, by GTG (Val) and CGG (Arg), and ITIH1*3, by GAG (Glu) and CGG (Arg).  相似文献   

4.
Four cases of Crouzon syndrome, one familial and three sporadic, were investigated for mutations in exon B of the fibroblast growth factor receptor 2 (FGFR2) gene. In the familial case, a mutation was found at codon 340 that exchanged tyrosine for histidine. Mutations at codon 342, detected in the three sporadic cases, replaced a cysteine by another amino acid. While three of the mutations have been described before, the fourth mutation, a CG transversion at codon 342 in one of the sporadic cases, has not been recognized previously. Compilation of all exon B mutations in Crouzon syndrome described to date revealed that 6 of the 8 sporadic and 2 of the 9 familial cases have mutations in codon 342. These mutations caused the substitution of cysteine for another amino acid. Given that a mutation in codon 342 was found in 8 out of 17 cases and that in 9 cases the mutation occurred at five additional positions, codon 342 of exon B of the FGFR2 gene may be predisposed to mutations in Crouzon syndrome.  相似文献   

5.
We have analyzed the exon 9, 13, 14, 15, and 16 of cardiac beta myosin heavy chain gene in 96 Japanese patients with hypertrophic cardiomyopathy by using PCR-DNA conformation polymorphism analysis. The analysis revealed a sequence variation of the exon 16 in one patient. The sequence variation of a G to C transversion with replacement of Asn by Lys at the codon 615 was confirmed by sequencing and by dot-blot hybridization with an allele-specific oligonucleotide probe. Because the missense mutation was found at the residue conserved through birds to humans, this mutation was suggested to be a cause of hypertrophic cardiomyopathy in the patient. This is the first report of a mutant cardiac beta myosin heavy chain gene in the Japanese population.  相似文献   

6.
The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine) at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine) at codon 57. In addition, we found in the same patient's sample a silent polymorphism at codon 11 (Ala11Ala) of exon 1.  相似文献   

7.
8.
Summary The gene responsible for von Recklinghausen neurofibromatosis (NF1) has recently been identified, and several point mutations and deletions have been described. The availability of intron-exon boundaries of several exons of the NF1 gene facilitates the search for mutations in affected patients. We have analysed 38 patients for mutations in exon 4 of the NF1 gene, and found one patient with a CT transition at base position 1087 of the cDNA, changing an arginine codon to a stop codon, at amino acid position 365. Sequencing of other members of the family, including both parents, did not show the mutation, confirming that this mutation is responsible for this sporadic NF1 case. As the mutation described here was previously identified in an independent case by others, this case represents a recurrence of this mutation and suggests that codon 365 might be a hot spot for mutations in the NF1 gene. Thus, a specific search for this mutation should be performed when studying NF1 sporadic or familiar cases for genetic analysis.  相似文献   

9.
Troponin T is a central component of the thin filament-associated troponin-tropomyosin system and plays an essential role in the Ca(2+) regulation of striated muscle contraction. The importance of the structure and function of troponin T is evident in the regulated isoform expression during development and the point mutations resulting in familial hypertrophic and dilated cardiomyopathies. We report here that turkeys with inherited dilated cardiomyopathy and heart failure express an unusual low molecular weight cardiac troponin T missing 11 amino acids due to the splice out of the normally conserved exon 8-encoded segment. The deletion of a 9-bp segment from intron 7 of the turkey cardiac troponin T gene may be responsible for the weakened splicing of the downstream exon 8 during mRNA processing. The exclusion of the exon 8-encoded segment results in conformational changes in cardiac troponin T, an altered binding affinity for troponin I and tropomyosin, and an increased calcium sensitivity of the actomyosin ATPase. Expression of the exon 8-deleted cardiac troponin T prior to the development of cardiomyopathy in turkeys indicates a novel RNA splicing disease and provides evidence for the role of troponin T structure-function variation in myocardial pathogenesis and heart failure.  相似文献   

10.
李桢  邹红岩  邵超鹏  唐斯  王大明  程良红 《遗传》2007,29(11):1367-1372
使用FLOW-SSO、PCR-SSP以及测序等分型技术, 发现一个与HLA-B*270401基因相关的未知基因。设计基因特异性引物单独扩增B*27基因的外显子2-5, 包括内含子2-4, 并进行双向测序, 分析与B*270401基因序列的差异。该基因的扩增产物为1 815 bp。与B*270401相比在外显子3和4共有10个碱基的改变, 从而使相应氨基酸发生错义或同义突变。碱基634 A→C (密码子130丝氨酸→精氨酸); 670 A→T (密码子142苏氨酸→丝氨酸); 683 G→T (密码子146色氨酸→亮氨酸); 698 A→T (密码子151谷氨酸→缬氨酸); 774 G→C (密码子176谷氨酸→天冬氨酸); 776 C→A (密码子177苏氨酸→赖氨酸); 781 C→G (密码子179谷氨酰胺→谷氨酸); 789 G→T (密码子181丙氨酸同义突变); 1 438 C→T (密码子206甘氨酸同义突变); 1 449 G→C (密码子210甘氨酸→丙氨酸)。在IMGT/HLA数据库中B*27组只有3个基因(B*270502 / 2706 / 2732)提交了内含子序列。该未知基因的内含子2序列与B*2706相同, 显示了与B*27组基因的同源性, 但其同源性在内含子3、4均未得到支持, 与B*27组基因相比, 内含子3的第106个碱基C→G, 碱基168缺失, 碱基179 G→A, 碱基536 G→A; 内含子4中碱基82 T→C。但其内含子3、4序列却与B*070201完全相同。该基因序列已提交GenBank, 编号为被DQ915176, 被WHO确认为HLA-B*2736等位基因。  相似文献   

11.
We have recently shown that mutations in oligophrenin-1 (OPHN1) are responsible for non-specific X-linked mental retardation (MRX). The structure of the gene encoding the OPHN1 protein was determined by isolation of genomic DNA clones from the human cosmid library. Genomic fragments containing exons were sequenced, and the sequences of the exons and flanking introns were defined. Knowledge of the genomic structure of the OPHN1 gene, which spans at least 500 kb and consists of 25 exons, will facilitate the search for additional mutations in OPHN1. OPHN1 was screened for mutations in 164 subjects with non-specific mental retardation. Three nucleotide substitutions were identified, one of which was a silent mutation in the codon threonine 301 at position 903 (G-->C). The other substitutions were located in exon 2, a G-->A substitution at position 133 (A45T), and in exon 10, a C-->T substitution at position 902 (T301M), but these are common polymorphisms rather than disease-causing mutations.  相似文献   

12.
Thyroxine-binding globulin (TBG) is a liver glycoprotein that transports thyroid hormone in serum. In 1987 a variant TBG was discovered in an infant born in Quebec, following an investigation prompted by the finding of low blood thyroxine (T4) level on screening for neonatal hypothyroidism. This variant, TBG-Quebec, has cathodal shift on isoelectric focusing, reduced affinity for thyroxine, and markedly reduced stability. The latter property of the variant molecule is probably responsible for the partial TBG deficiency. We now report the results of sequencing of the entire coding region and exon-intron junctions of TBG-Quebec, which revealed two nucleotide substitutions; one, located in exon 3, changes the normal codon 283 of TTG (leucine) to that of TTT (phenylalanine), and the other, in exon 4, results in the replacement of the normal histidine-331 (CAT) by tyrosine (TAT). Allele-specific amplification (ASA) confirmed the cosegregation of the two nucleotide substitutions with the TBG-Quebec phenotype in individual members of this family. The substitution in codon 283, but not that in codon 331, has been previously described and, when occurring alone, does not alter the properties of the gene product. Thus, it appears that the replacement of histidine-331 by tyrosine is responsible for the observed altered properties of TBG-Quebec. However, the question of whether substitution of both amino acids is necessary for expression of the variant phenotype has yet to be answered.  相似文献   

13.
This study identified mutations of the idumate-2-suffatase (IDS) gene in a patient with Hunter syndrome,and established a basis for the diagnosis of the prenatal gene of Hunter syndrome.Urine glyeosaminoglycan (GAG) assay was used to make the preliminary diagnosis of mucopolysaccharidosis type H.Polymerase chain reaction (PCR) from dried blood spots and DNA sequencing were applied to analyze hotspot mutations in exons 9,3 and 8 of the IDS gene in the proband and his parents.A new missense mutation (T1140C) in exon 8 of the IDS gene was found by using DNA sequencing.This mutation caused a substitution of codon 339 from CTA (leucine) to CCA (praline).The patient is a hemizygote,and his mother is a heterozygote.The new missense mutation results in a change in the primary and tertiary structure of the IDS protein.It is possible that this mutation severely impairs enzymatic activity and is the underlying basis for the pathology seen in this patient with Hunter syndrome.  相似文献   

14.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. We have analyzed CYP21 gene sequences in 65 CAH families in Taiwan. All ten exons of the CYP21 gene were analyzed by differential polymerase chain reaction followed by single-strand conformation polymorphism electrophoresis and the amplification-created restriction site method. About 95% (123 chromosomes) contain mutations due to conversion of DNA sequences into its neighboring homologous pseudogene, CYP21P. Four novel mutations representing 5% of the total chromosomes have also been identified. The mutations were confirmed by sequencing an aberrant DNA fragment. These four mutations included a base change of the splicing donor site at intron 2 from GT to AT, a base substitution of C to T at codon 316, deletion of ten bases (TCCAGCTCCC) at codons 330–333 of exon 8, and duplication of 16 bases (CCTGGATGACACGGTC) at codons 393–397 of exon 9. The loss of the splicing donor site at intron 2 and the premature stop at codon 316 may result in aberrant splicing to reduce enzyme activity and a truncated protein with no enzyme activity, respectively. Likewise, both the duplication and the deletion forms create a frameshift and premature stop during translation. The resulting proteins lack the heme-binding domain and hence are expected to lose enzymatic activity. Since these mutations are not found in the neighboring CYP21P pseudogene, gene conversion should not be the cause of these novel mutations. Received: 20 April 1998 / Accepted: 30 May 1998  相似文献   

15.
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetically heterogenous disease caused by mutations in genes that primarily encode sarcomeric proteins. No mutation is identified in up to 40% of HCM patients, suggesting other causative genes exist. Natriuretic peptide precursor B (NPPB; also known as "BNP") is a cardiac hormone involved in body fluid homeostasis and cardiac myocyte growth. NPPB concentrations are markedly increased in patients with ventricular hypertrophy, and it is therefore possible mutations in the NPPB gene could cause HCM. METHODS: Genomic DNA was extracted from peripheral blood in 238 consecutive probands with HCM. The coding regions and intron/exon boundaries in the NPPB gene were amplified by PCR, and products were screened for sequence variants using high-performance liquid chromatography, followed by direct DNA sequencing. RESULTS: Four sequence variants in the NPPB gene were identified in 9 of the 238 probands screened. Two of the variants were intronic, one was a synonymous variant at codon 79, and the final variant resulted in an amino acid substitution from arginine to histidine at codon 47 (Arg47His). The Arg47His variant was identified in a control population consisting of 204 chromosomes at an allelic frequency of 0.5%, and is therefore unlikely to cause disease. CONCLUSION: No disease causing mutations were identified in the NPPB gene in this cohort, indicating that mutations in this gene are unlikely to be responsible for HCM.  相似文献   

16.
17.
Minami SB  Masuda S  Usui S  Mutai H  Matsunaga T 《Gene》2012,501(2):193-197
It is rarely reported that two distinct genetic mutations affecting hearing have been found in one family. We report on a family exhibiting comorbid mutation of GJB2 and WFS1. A four-generation Japanese family with autosomal dominant sensorineural hearing loss was studied. In 7 of the 24 family members, audiometric evaluations and genetic analysis were performed. We detected A-to-C nucleotide transversion (c.2576G>C) in exon 8 of WFS1 that was predicted to result in an arginine-to-proline substitution at codon 859 (R859P), G-to-A transition (c.109G>A) in exon 2 of GJB2 that was predicted to result in a valine-to-isoleucine substitution at codon 37 (V37I), and C-to-T transition (c.427C>T) in exon 2 of GJB2 that was predicted to result in an arginine-to-tryptophan substitution at codon 143 (R143W). Two individuals who had heterozygosity of GJB2 mutations and heterozygosity of WFS1 mutations showed low-frequency hearing loss. One individual who had homozygosity of GJB2 mutation without WFS1 mutation had moderate, gradual high tone hearing loss. On the other hand, a moderate flat loss configuration was seen in one individual who had compound heterozygosity of GJB2 and heterozygosity of WFS1 mutations. Our results indicate that the individual who has both GJB2 and WFS1 mutations can show GJB2 phenotype.  相似文献   

18.
To elucidate genetic abnormalities in type I CD36 deficiency, we analyzed 28 Japanese subjects whose platelets and monocytes/macrophages lacked CD36 on their surface. We identified two novel mutations in the CD36 gene. One was a complex deletion/insertion mutation, in which 3 bp, GAG, were deleted at nucleotide (nt) 839-841, and 5 bp, AAAAC, were inserted at the same position (839-841del-->insAAAAC). Mutation 839-841del-->insAAAAC led to a frameshift and appearance of a premature stop codon; it was also accompanied with a marked reduction in the amount of CD36 mRNA. The other was a 12-bp deletion at nt 1438-1449 (1438-1449del) accompanied with or without skipping of exon 9 (nt 959-1028). Mutation 1438-1449del led to an inframe 4-amino-acid deletion, whereas exon 9 skipping led to a frameshift and the appearance of a premature stop codon. Expression assay revealed that both 1438-1449del and exon 9 skipping directly caused impairment of the surface expression of CD36. A survey of the five known mutations including 839-841del-->insAAAAC and 1438-1449del in type I CD36-deficient subjects demonstrated that the five mutations covered more than 90% of genetic defects among them and that the substitution of T for C at nt 478 (478C-->T) was the most common mutation with more than 50% frequency. However, none of the four subjects that possessed isoantibodies against CD36 had 478C-->T, suggesting that 478C-->T prevents the production of isoantibodies against CD36.  相似文献   

19.
Three novel mutations in Japanese patients with 21-hydroxylase deficiency   总被引:2,自引:0,他引:2  
OBJECTIVE: This study analyzed the mutation of 21-hydroxylase deficiency (21-OHD) in 36 unrelated Japanese patients with congenital adrenal hyperplasia (CAH). METHODS: All the exons of the functional CYP21 gene (CYP21A2) were analyzed by polymerase chain reaction (PCR) and PCR direct sequencing. RESULTS: Apparent gene deletions and conversions were present in 23.6% of the 72 CAH alleles, in which the most frequent mutation was the IVS2-13 A/C>G (27.8%), followed by I172N (26.3%), consistent with the frequencies reported for other countries. Previously described mutations were not present in three unrelated cases. Sequence analysis of the complete functional CYP21A2 gene revealed three, not yet described mutations that represent a common pseudogene sequence. These three putative novel mutations are located in exon 1 (M1I), in exon 5 (1210-1211insT), and in exon 3 (R124H). CONCLUSIONS: In this study, we have identified three putative novel mutations. It remains to be determined whether these three mutations are responsible for the significant number of as yet uncharacterized CAH patients in Japan.  相似文献   

20.
郭奕斌  杜传书 《遗传》2006,28(5):521-524
应用尿黏多糖含量检测、干血滤纸片直接扩增、PCR产物直接测序法对患者及其父母等的IDS基因的突变热点exons9,3,8进行突变检测。发现患儿IDS基因的exon8发生一新的错义突变,突变部位在第339位密码子(CTA)内,即cDNA第1140bp的T突变为C,导致原339位的“亮氨酸CTA”突变为“脯氨酸CCA”。该患儿为这一突变的半合子,而其母为这一突变的杂合子。该错义突变改变了IDS酶的一级结构和三级空间结构,从而可能引起IDS酶活性大大降低,这可能是该Hunter综合征患者的真正致病原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号