首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhythmic pineal melatonin biosynthesis develops in chick embryos incubated under a light (L)-dark (D) cycle of polychromatic white light. The spectral sensitivity of the embryonic pineal gland is not known and was investigated in this study. Broiler breeder eggs (Ross 308, n=450) were incubated under white, red, green or blue light under the 12L : 12D cycle. Melatonin was measured in extracts of pineal glands by radioimmunoassay. The daily rhythm of pineal melatonin levels in 20-day-old chick embryos was confirmed during the final stages of embryonic life under all four wavelengths of light with expected higher concentrations during dark- than light-times. The highest pineal melatonin levels were determined in chick embryos incubated under red and white light and lower levels under green light. The incubation under blue light resulted in the lowest melatonin biosynthesis. Pineal melatonin concentrations increased substantially on post-hatching day two compared with pre-hatching levels and we did not find differences between birds incubated and kept in either white or green light. Our results demonstrate a selective sensitivity of the chick embryo pineal gland to different wavelengths of light. Rhythmic melatonin production is suggested as a possible mechanism, which transfers information about the quality of ambient light to the developing avian embryo.  相似文献   

2.
The pineal gland is involved in the regulation of tumour growth through the anticancer activity of melatonin, which presents immunomodulatory, anti-proliferative and anti-oxidant effects. In this study we measured melatonin content directly in the pineal gland, in an attempt to clarify the modulation of pineal melatonin secretory activity during tumour growth. Different groups of Walker 256 carcinosarcoma bearing rats were sacrificed at 12 different time points during 24h (12h:12h light/dark cycle) on different days during the tumour development (on the first, seventh and fourteenth day after tumour inoculation). Melatonin content in the pineal gland was determined by high-performance liquid chromatography with electrochemical detection. During tumour development the amount of melatonin secreted increased from 310.9 ng/mg of protein per day from control animals, to 918.1 ng/mg of protein per day 14 days after tumour implantation, and there were changes in the pineal production profile of melatonin. Cultured pineal glands obtained from tumour-bearing rats turned out to be less responsive to noradrenaline, suggesting the existence, in vivo, of putative factor(s) modulating pineal melatonin production. The results demonstrated that during tumour development there is a modification of pineal melatonin production daily profile, possibly contributing to cachexia, associated to changes in pineal gland response to noradrenaline stimulation.  相似文献   

3.
4.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

5.
Melatonin, a hormone produced by the pineal gland, is important for regulating circadian rhythms in many animals. Light at night causes an acute suppression of melatonin in nearly all vertebrate species. A previous study found that light failed to suppress melatonin in the lizard Anolis carolinensis. This is a surprising result given that the Anolis pineal gland is intrinsically photosensitive, is a key pacemaker controlling locomotor activity, and can be directly entrained to a light-dark cycle. To find out if the lack of photic suppression is widespread in the Anolis genus, we investigated the acute effects of light on melatonin secretion in five different species of Anolis using flow-through tissue culture. We administered a two-hour pulse of bright light to isolated pineal glands during the night. The results show photic suppression of melatonin in all five Anolis species, but the suppression is weak relative to that seen in other vertebrates. Moreover, Anolis species differ in the magnitude of the effect. These findings are discussed in the context of vertebrate pineal evolution and the ecology of Anolis lizards. Given their extensive phylogenetic and ecological divergence, Anolis lizards provide a promising system for investigating the ecology and evolution of circadian organization.  相似文献   

6.
Pituitary adenylate cyclase activating polypeptide (PACAP) has been shown to participate in modulation of circadian rhythm and to stimulate melatonin (MT) secretion in both the rat and chicken pineal glands. In contrast to mammals, the main regulator of circadian rhythm in birds is the pineal gland, which begins its rhythmic MT production already during embryonic life. In the present study, we investigated the development of MT secretion in explanted embryonic chicken pineals and their responsiveness to PACAP in a perifusion system. Our results show that: (1) the circadian clock and/or the intracellular signal transduction system connecting the clock to MT synthesizing apparatus develop between the embryonic days 16-18 (E16-18), even in vitro. (2) Exposure of the embryonic chicken pineal gland to PACAP induces transitory increase in MT secretion but does not induce visible phase shift in the circadian rhythm. (3) Cyclic AMP (cAMP) efflux also responds to PACAP at or before day E13 in embryonic chicken pineal gland in vitro.  相似文献   

7.
The pineal gland and its major output signal melatonin have been demonstrated to play a central role in the seasonal organization of the ruin lizard Podarcis sicula. Seasonal variations in the amplitude of the nocturnal melatonin signal, with high values in spring as compared to low values in summer and autumn, have been found in vivo. The authors examined whether the pineal gland of the ruin lizard contains autonomous circadian oscillators controlling melatonin synthesis and whether previously described seasonal variations of in vivo melatonin production can also be found in isolated cultured pineal glands obtained from ruin lizards in summer and winter. In vitro melatonin release from isolated pineal glands of the ruin lizard persisted for 4 days in constant conditions. Cultured explanted pineal glands obtained from animals in winter and summer showed similar circadian rhythms of melatonin release, characterized by damping of the amplitude of the melatonin rhythm. Although different photoperiodic conditions were imposed on ruin lizards before explantation of pineal glands, the authors did not find any indication for corresponding differences in the duration of elevated melatonin in vitro. Differences were found in the amplitude of in vitro melatonin production in light/dark conditions and, to a lesser degree, in constant conditions. The presence of a circadian melatonin rhythm in vitro in winter, although such a rhythm is absent in vivo in winter, suggests that pineal melatonin production is influenced by an extrapineal oscillator in the intact animal that may either positively or negatively modulate melatonin production in summer and winter, respectively.  相似文献   

8.
We investigated the effects of diazepam (DZP) and its three metabolites: nordiazepam (NZP), oxazepam (OZP), and temazepam (TZP) on pineal gland nocturnal melatonin secretion. We looked at the effects of benzodiazepines on pineal gland melatonin secretion both in vitro (using organ perifusion) and in vivo in male Wistar rats sacrificed in the middle of the dark phase. We also examined the effects of these benzodiazepines on in vivo melatonin secretion in the Harderian glands. Neither DZP (10-5-10-6 M) nor its metabolites (10-4-10-5 M) affected melatonin secretion by perifused rat pineal glands in vitro. In contrast, a 10-4 M suprapharmacological concentration of DZP increased melatonin secretion of perifused pineal glands by 70%. In vivo, a single acute subcutaneous administration of DZP (3 mg/kg body weight) significantly affected pineal melatonin synthesis and plasma melatonin levels, while administration of the metabolites under the same conditions did not. DZP reduced pineal melatonin content (-40%), N-acetyltransferase activity (-70%), and plasma melatonin levels (-40%), but had no affects on pineal hydroxyindole-O-methyltransferase activity. Neither DZP nor its metabolites affected Harderian gland melatonin content. Our results indicate that the in vivo inhibitory effect of DZP on melatonin synthesis is not due to the metabolism of DZP. The results also show that the control of melatonin production in the Harderian glands differs from that observed in the pineal gland.  相似文献   

9.
Djeridane Y  Touitou Y 《Life sciences》2005,76(20):2393-2401
The effects of ghrelin, a peptide hormone secreted from the stomach, on melatonin remain unknown. The aim of the study was to investigate possible ghrelin-melatonin interactions by studying the effect of ghrelin treatment on melatonin production in rat pineal and Harderian glands. Young (9 weeks) and old (20 months) male Wistar rats, maintained under a light:dark cycle regimen of 12:12, were assigned randomly to either a single subcutaneous (s.c.) injection of saline or ghrelin (1 microg/rat or 15 microg/rat) 1 h before sacrifice in the middle of the dark phase, or repeated s.c. saline or ghrelin injections (15 microg/rat), 3, 2 and 1 h before sacrificed in the middle of the dark phase. Neither ghrelin doses (1 microg/rat or 15 microg/rat) nor type of treatment (acute or repeated) influenced melatonin levels or the melatonin synthesizing enzymes N-acetyltransferase and hydroxyindole-O-methyltransferase activities, either in pineal gland or in Harderian glands. At the concentrations used, ghrelin does not influence melatonin production in rat pineal and Harderian glands, and therefore is not involved in the regulation of melatonin secretion, at least under our experimental conditions.  相似文献   

10.
Continuous exposure of male hamsters to short day lengths induces testicular regression. This is followed many weeks later by spontaneous recrudescence of the testes with reinitiation of spermatogenesis and function of the accessory sexual glands. Hamsters at this stage of the annual reproductive cycle are refractory to short photoperiods--even continuous darkness will not induce another bout of testicular regression. Animals refractory to short days are also refractory to the pineal hormone melatonin and a number of investigators attribute spontaneous recrudescence and photo and melatonin refractoriness to a developed target cell insensitivity to endogenous melatonin from the pineal. Refractoriness is terminated by exposure to long days for at least 11 weeks. The pineal gland is reported to be essential for this process. We report here the effects of pinealectomy, daily melatonin injections, and constant-release melatonin implants on the ability of male hamsters to recover from the refractory state. In the absence of the pineal gland, refractory male hamsters did not discriminate (count?) 15 weeks of long days to terminate refractoriness. Daily melatonin injections at 1900 h, but not at 1200 h (lights 0600-2000 h) during the 15 weeks of long-day exposure blocked the recovery from refractoriness. Constant-release melatonin implants abolished the animals ability to measure 12 and 15 weeks of long days to terminate refractoriness. These results demonstrate that general target tissue insensitivity to melatonin cannot account for the refractory state in hamsters, that a multiplicity of target tissues may exist for melatonin to account for its varied roles throughout the annual reproductive cycle in hamsters, and that the pineal gland is intimately involved in the animals' ability to measure a prescribed duration of long days to terminate refractoriness.  相似文献   

11.
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.  相似文献   

12.
The presence of luteinizing hormone receptors in human pineal glands from five females and three males, ranging in age from 61-89 yr, was examined by in situ hybridization and immunocytochemistry. The results demonstrated the presence of these receptors at the mRNA and protein levels in all the pineal glands examined. Pineal gland luteinizing hormone receptors could potentially be involved in the regulation of melatonin synthesis.  相似文献   

13.
The presence of luteinizing hormone receptors in human pineal glands from five females and three males, ranging in age from 61-89 yr, was examined by in situ hybridization and immunocytochemistry. The results demonstrated the presence of these receptors at the mRNA and protein levels in all the pineal glands examined. Pineal gland luteinizing hormone receptors could potentially be involved in the regulation of melatonin synthesis.  相似文献   

14.
We studied the annual correlation of ovarian activity and pineal gland in relation with seasonal variation and gestation of a tropical zone short-nosed fruit bat Cynopterus sphinx. Female bats showed bimodal polyestry (February/March and September/October) in their reproductive cycle. Plasma estradiol concentration ran parallel with ovarian activity and had an inverse relation with pineal mass and peripheral melatonin concentration. Due to the delayed embryonic development in the uterus (October-March) of female bats, interestingly, the uterine activity did not show a parallel relation with ovarian activity and estradiol level. Further, compared with normal non-pregnant females, melatonin level was high during gestation and delayed embryonic development phase. This suggests that the reproductive synchrony and annual variation in ovarian activity of this nocturnal flying mammal differ from other common tropical mammals. The delayed embryonic development in bats might be an adaptive strategy for the unfavorable conditions of the seasons and might be regulated by high peripheral estradiol and melatonin concentration.  相似文献   

15.
The ricefield eel (Monopterus albus Zuiew), a burrowing eel-like synbranchoid teleost, undergoes a natural sex change from female to male during its life history. Since the teleost pineal gland and its melatoninergic output have been suggested as regulators in seasonal reproduction and sexual maturation in many fish species, it is reasonable to postulate that melatonin may play important roles in the ricefield eel’s sex-change process. This hypothesis was tested by examining secretional characteristics and reproductive effects of melatonin in the ricefield eel. Results indicate that serum melatonin (mainly secreted from the pineal complex, retinae and gastrointestinal tract) is involved in sex change of this species. It seems that, within a reproductive cycle, relatively lower mid-night serum melatonin (MNSM) levels are necessary for natural spawning, but relatively higher MNSM levels after spawning permit initiation of the sex-change process. A putative model is presented to clarify the involvement of melatonin in natural sex change of the ricefield eel, although the precise mechanisms are still under further investigation.  相似文献   

16.
In mammals, pineal gland is intimately concerned with the co-ordination of rhythm physiology. Biochemical characteristics of pineal gland in man and other mammals may provide strong, yet sometimes elusive support for the belief in functional individuality and probable importance of this tiny gland. In seasonal breeding animals, pineal gland function is very much dependent on the reproductive status. Therefore, the aim of this experiment is to note the circadian rhythmicity of different biochemical constituents of pineal gland during active and inactive phases of reproductive cycle of a seasonally breeding rodent, F. pennanti. In the present study, pineal biochemical constituents i.e. protein and cholesterol showed higher values during daytime (1400 h). The plasma melatonin level presented two peaks during active (April; at 1800 h and 0200 h) and inactive (December; at 1400 h and 0200 h) phases of reproductive cycle. The pineal protein, cholesterol and plasma melatonin values in term of basal and peak levels were higher during the reproductive inactive/pineal active phase. Therefore, pineal--also known to have antigonadotropic properties and cholesterol which appears conjugated with pineal serotonin, presented circadian rhythmicity along with the plasma level of melatonin. This rhythmicity noted in present study was dependent on the reproductive and pineal activity status, and might be regulated by the sex steroid receptor present on the pineal gland.  相似文献   

17.
The role of cyclic AMP in the regulation of melatonin production was investigated in cultured Syrian hamster pineal glands. Forskolin markedly increased cyclic AMP production in pineal glands collected either late in the light period or in the dark period. The effect of forskolin was synergistically enhanced by 3-isobutylmethylxanthine, a phosphodiesterase inhibitor; however, increase in cyclic AMP after isoproterenol was only apparent in the presence of 3-isobutylmethylxanthine. Since beta-adrenergic agonists are able to stimulate melatonin production late in the dark period only, these data suggest that, in the hamster pineal gland, there may be intracellular mechanisms in addition to a cyclic AMP increase required for induction of melatonin production by beta-adrenergic agonists.  相似文献   

18.
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12?h:12?h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.  相似文献   

19.
Djeridane Y  Touitou Y 《Steroids》2004,69(5):343-349
This study investigates the effects of acute and chronic injections of the neurosteroid dehydroepiandrosterone (DHEA) and its sulfate DHEA-S on pineal gland melatonin synthesis. Pineal melatonin production and plasma melatonin levels were investigated in young (9-week-old) and old (27-month-old) male Wistar rats. DHEA or DHEA-S have been administered acutely in a single intraperitoneal injection at a dosage of 50, 250, or 500 microg per animal, or on a long-term basis, i.e., for 8 days at a dosage of 100 microg per animal, 1 h before the onset of darkness. DHEA, at a dose of 50, 250, or 500 microg per animal, administered acutely to rats had no significant effects on pineal melatonin production whatever the age of the animals. In contrast, 500 microg DHEA-S induced a significant increase in the pineal melatonin content (15% in young animals and 35% in old animals) and the activity of N-acetyltransferase, the rate-limiting enzyme for melatonin synthesis in the pineal gland, (40% in young animals and 20% in old animals), without altering the activity of hydroxyindole-O-methyltransferase whatever the age of the animals. At lower concentrations (50 or 250 microg) DHEA-S had no effect on pineal melatonin production regardless of the age of the rats. Chronic injection of DHEA or DHEA-S at a dose of 100 microg had no effect on pineal melatonin or NAT and HIOMT activities in the two age groups. This work shows that DHEA-S (and not DHEA) is able, at pharmacological concentrations, to stimulate melatonin production by rat pineal glands regardless of the age of the animals.  相似文献   

20.
Bidirectional communication between the pineal gland and the immune system   总被引:1,自引:0,他引:1  
The pineal gland is a vertebrate neuroendocrine organ converting environmental photoperiodic information into a biochemical message (melatonin) that subsequently regulates the activity of numerous target tissues after its release into the bloodstream. A phylogenetically conserved feature is increased melatonin synthesis during darkness, even though there are differences between mammals and birds in the regulation of rhythmic pinealocyte function. Membrane-bound melatonin receptors are found in many peripheral organs, including lymphoid glands and immune cells, from which melatonin receptor genes have been characterized and cloned. The expression of melatonin receptor genes within the immune system shows species and organ specificity. The pineal gland, via the rhythmical synthesis and release of melatonin, influences the development and function of the immune system, although the postreceptor signal transduction system is poorly understood. Circulating messages produced by activated immune cells are reciprocally perceived by the pineal gland and provide feedback for the regulation of pineal function. The pineal gland and the immune system are, therefore, reciprocally linked by bidirectional communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号