首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperoxia disrupts vascular and alveolar growth of the developing lung and contributes to the development of bronchopulmonary dysplasia (BPD). Endothelial progenitor cells (EPC) have been implicated in repair of the vasculature, but their role in lung vascular development is unknown. Since disruption of vascular growth impairs lung structure, we hypothesized that neonatal hyperoxia impairs EPC mobilization and homing to the lung, contributing to abnormalities in lung structure. Neonatal mice (1-day-old) were exposed to 80% O(2) at Denver's altitude (= 65% at sea level) or room air for 10 days. Adult mice were also exposed for comparison. Blood, lung, and bone marrow were harvested after hyperoxia. Hyperoxia decreased pulmonary vascular density by 72% in neonatal but not adult mice. In contrast to the adult, hyperoxia simplified distal lung structure neonatal mice. Moderate hyperoxia reduced EPCs (CD45-/Sca-1+/CD133+/VEGFR-2+) in the blood (55%; P < 0.03), bone marrow (48%; P < 0.01), and lungs (66%; P < 0.01) of neonatal mice. EPCs increased in bone marrow (2.5-fold; P < 0.01) and lungs (2-fold; P < 0.03) of hyperoxia-exposed adult mice. VEGF, nitric oxide (NO), and erythropoietin (Epo) contribute to mobilization and homing of EPCs. Lung VEGF, VEGF receptor-2, endothelial NO synthase, and Epo receptor expression were reduced by hyperoxia in neonatal but not adult mice. We conclude that moderate hyperoxia decreases vessel density, impairs lung structure, and reduces EPCs in the circulation, bone marrow, and lung of neonatal mice but increases EPCs in adults. This developmental difference may contribute to the increased susceptibility of the developing lung to hyperoxia and may contribute to impaired lung vascular and alveolar growth in BPD.  相似文献   

2.
VEGF signaling inhibition decreases alveolar and vessel growth in the developing lung, suggesting that impaired VEGF signaling may contribute to decreased lung growth in bronchopulmonary dysplasia (BPD). Whether VEGF treatment improves lung structure in experimental models of BPD is unknown. The objective was to determine whether VEGF treatment enhances alveolarization in infant rats after hyperoxia. Two-day-old Sprague-Dawley rats were placed into hyperoxia or room air (RA) for 12 days. At 14 days, rats received daily treatment with rhVEGF-165 or saline. On day 22, rats were killed. Tissue was collected. Morphometrics was assessed by radial alveolar counts (RAC), mean linear intercepts (MLI), and skeletonization. Compared with RA controls, hyperoxia decreased RAC (6.1 +/- 0.4 vs. 11.3 +/- 0.4, P < 0.0001), increased MLI (59.2 +/- 1.8 vs. 44.0 +/- 0.8, P < 0.0001), decreased nodal point density (447 +/- 14 vs. 503 +/- 12, P < 0.0004), and decreased vessel density (11.7 +/- 0.3 vs. 18.9 +/- 0.3, P < 0.001), which persisted despite RA recovery. Compared with hyperoxic controls, rhVEGF treatment after hyperoxia increased RAC (11.8 +/- 0.5, P < 0.0001), decreased MLI (42.2 +/- 1.2, P < 0.0001), increased nodal point density (502 +/- 7, P < 0.0005), and increased vessel density (23.2 +/- 0.4, P < 0.001). Exposure of neonatal rats to hyperoxia impairs alveolarization and vessel density, which persists despite RA recovery. rhVEGF treatment during recovery enhanced vessel growth and alveolarization. We speculate that lung structure abnormalities after hyperoxia may be partly due to impaired VEGF signaling.  相似文献   

3.
We have previously shown that neonatal mice deficient in endothelial nitric oxide synthase (eNOS-/-) are more susceptible to hypoxic inhibition of alveolar and vascular growth. Although eNOS is downregulated, the role of nitric oxide (NO) during recovery after neonatal lung injury is poorly understood. We hypothesized that lung vascular and alveolar growth would remain impaired in eNOS-/- mice during recovery in room air and that NO therapy would augment compensatory lung growth in the eNOS-/- mice during recovery. Mice (1 day old) from heterozygous (eNOS+/-) parents were placed in hypobaric hypoxia (Fi(O2) = 0.16). After 10 days, pups were to recovered in room air (HR group) or inhaled NO (10 parts/million; HiNO group) until 3 wk of age, when lung tissue was collected. Morphometric analysis revealed that the eNOS-/- mice in the HR group had persistently abnormal lung structure compared with eNOS-sufficient (eNOS+/+) mice (increased mean linear intercept and reduced radial alveolar counts, nodal point density, and vessel density). Lung morphology of the eNOS+/- was not different from eNOS+/+. Inhaled NO after neonatal hypoxia stimulated compensatory lung growth in eNOS-/- mice that completely restored normal lung structure. eNOS+/- mice (HR group) had a 2.5-fold increase in lung vascular endothelial growth factor (VEGFR)-2 protein compared with eNOS+/+ (P < 0.05). eNOS-/- mice (HiNO group) had a 66% increase in lung VEGFR-2 protein compared with eNOS-/- (HR group; P < 0.01). We conclude that deficiency of eNOS leads to a persistent failure of lung growth during recovery from neonatal hypoxia and that, after hypoxia, inhaled NO stimulates alveolar and vascular growth in eNOS-/- mice.  相似文献   

4.
Persistent pulmonary hypertension of the newborn (PPHN) is a clinical disorder characterized by abnormal vascular structure, growth, and reactivity. Disruption of vascular growth during early postnatal lung development impairs alveolarization, and newborns with lung hypoplasia often have severe pulmonary hypertension. To determine whether pulmonary hypertension can directly impair vascular growth and alveolarization in the fetus, we studied the effects of chronic intrauterine pulmonary hypertension on lung growth in fetal lambs. We performed surgery, which included partial constriction of the ductus arteriosus (DA) to induce pulmonary hypertension (PH, n = 14) or sham surgery (controls, n = 13) in fetal lambs at 112-125 days (term = 147 days). Tissues were harvested near term for measurement of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), mean linear intercepts (MLI), wall thickness, and vessel density of small pulmonary arteries. Chronic DA constriction caused RVH (P < 0.0001), increased wall thickness of small pulmonary arteries (P < 0.002), and reduced small pulmonary artery density (P < 0.005). PH also reduced alveolarization, causing a 27% reduction in RAC and 20% increase in MLI. Furthermore, prolonged DA constriction (21 days) not only decreased RAC and increased MLI by 30% but also caused a 25% reduction of lung-body weight ratio. We conclude that chronic PH reduces pulmonary arterial growth, decreases alveolar complexity, and impairs lung growth. We speculate that chronic hypertension impairs vascular growth, which disrupts critical signaling pathways regulating lung vascular and alveolar development, thereby interfering with alveolarization and ultimately resulting in lung hypoplasia.  相似文献   

5.
We previously reported that vascular endothelial growth factor (VEGF) increases vascular permeability through the synthesis of endothelial platelet-activating factor (PAF), while others reported the contribution of nitric oxide (NO). Herein, we addressed the contribution of VEGF receptors and the role played by PAF and NO in VEGF-induced plasma protein extravasation. Using a modified Miles assay, intradermal injection in mice ears of VEGF-A(165), VEGF-A(121), and VEGF-C (1 microM) which activate VEGFR-2 (Flk-1) receptor increased vascular permeability, whereas a treatment with VEGFR-1 (Flt-1) analogs; PlGF and VEGF-B (1 microM) had no such effect. Pretreatment of mice with PAF receptor antagonist (LAU8080) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NAME) abrogated protein extravasation mediated by VEGF-A(165). As opposed to PAF (0.01-1 microM), treatment with acetylcholine (ACh; up to 100 microM; inducer of NO synthesis) or sodium nitroprusside (SNP; up to 1 microM; NO donor) did not induce protein leakage. Simultaneous pretreatment of mice with eNOS and protein kinase A (PKA) inhibitors restored VEGF-A(165) vascular hyperpermeability suggesting that endogenous NO synthesis leads to PKA inhibition, which support maintenance of vascular integrity. Our data demonstrate that VEGF analogs increase vascular permeability through VEGFR-2 activation, and that both endogenous PAF and NO synthesis contribute to VEGF-A(165)-mediated vascular permeability. However, PAF but not NO directly increases vascular permeability per se, thereby, suggesting that PAF is a direct inflammatory mediator, whereas NO serves as a cofactor in VEGF-A(165) proinflammatory activities.  相似文献   

6.
VEGF plays a critical role during lung development and is decreased in human infants with bronchopulmonary dysplasia. Inhibition of VEGF receptors in the newborn rat decreases vascular growth and alveolarization and causes pulmonary hypertension (PH). Nitric oxide (NO) is a downstream mediator of VEGF, but whether the effects of impaired VEGF signaling are due to decreased NO production is unknown. Therefore, we sought to determine whether impaired VEGF signaling downregulates endothelial NO synthase (eNOS) expression in the developing lung and whether inhaled NO (iNO) decreases PH and improves lung growth after VEGF inhibition. Newborn rats received a single dose of SU-5416 (a VEGF receptor inhibitor) or vehicle by subcutaneous injection and were killed up to 3 wk of age for assessments of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), lung eNOS protein, and NOx production in isolated perfused lungs (IPL). Neonatal treatment with SU-5416 increased RVH in infant rats and reduced RAC. Compared with controls, SU-5416 reduced lung eNOS protein expression by 89% at 5 days (P < 0.01). IPL studies from day 14 rats demonstrated increased baseline pulmonary artery pressure and lower perfusate NOx concentration after SU-5416 treatment. Importantly, iNO treatment prevented the increase in RVH and improved RAC after SU-5416 treatment. We conclude that treatment of neonatal rats with SU-5416 downregulates lung eNOS expression and that iNO therapy decreases PH and improves lung growth after SU-5416 treatment. We speculate that decreased NO production contributes to PH and decreases distal lung growth caused by impaired VEGF signaling.  相似文献   

7.
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.  相似文献   

8.
9.
Nitric oxide (NO) release from endothelial cells, via endothelial NO synthase (eNOS) activation, is central to the proangiogenic actions of vascular endothelial growth factor (VEGF). VEGF signaling to eNOS is principally mediated by an Akt-dependent phosphorylation of eNOS and by increased association of eNOS to the molecular chaperone, heat-shock protein 90 kDa (Hsp90). Herein, we report that VEGFR-2 activation induces tyrosine phosphorylation of VEGF receptor 2 (VEGFR-2)-associated Hsp90beta. Tyrosine phosphorylation of Hsp90beta in response to VEGF is dependent on internalization of the VEGFR-2 and on Src kinase activation. Furthermore, we demonstrate that c-Src directly phosphorylates Hsp90 on tyrosine 300 residue and that this event is essential for VEGF-stimulated eNOS association to Hsp90 and thus NO release from endothelial cells. Our work identifies Y300 phosphorylation of Hsp90 as a novel regulated posttranslational modification of the chaperone and demonstrates its importance in the proangiogenic actions of VEGF, namely by regulating NO release from endothelial cells.  相似文献   

10.
We recently demonstrated that mice deficient in endothelial nitric oxide (NO) synthase (eNOS) have congenital septal defects and postnatal heart failure. However, the mechanisms by which eNOS affects heart development are not clear. We hypothesized that deficiency in eNOS impairs myocardial angiogenesis. Myocardial capillary densities were measured morphometrically in neonatal mouse hearts. In vitro tube formation on Matrigel was investigated in cardiac endothelial cells. In vivo myocardial angiogenesis was performed by implanting Matrigel in the left ventricular myocardium. Myocardial capillary densities and VEGF mRNA expression were decreased in neonatal eNOS(-/-) compared with neonatal wild-type mice (P < 0.01). Furthermore, in vitro tube formation from cardiac endothelial cells and in vivo myocardial angiogenesis were attenuated in eNOS(-/-) compared with wild-type mice (P < 0.01). In vitro tube formation was inhibited by N(G)-nitro-l-arginine methyl ester in wild-type mice and restored by a NO donor, diethylenetriamine-NO, in eNOS(-/-) mice (P < 0.05). In conclusion, deficiency in eNOS decreases VEGF expression and impairs myocardial angiogenesis and capillary development. Decreased myocardial angiogenesis may contribute to cardiac abnormalities during heart development in eNOS(-/-) mice.  相似文献   

11.
Pneumonectomy results in rapid compensatory growth of the remaining lung and also leads to increased flow and shear stress, which are known to stimulate endothelial nitric oxide synthase (eNOS). Nitric oxide is an essential mediator of vascular endothelial growth factor-induced angiogenesis, which should necessarily occur during compensatory lung growth. Thus our hypothesis is that eNOS is critical for compensatory lung growth. To test this, left pneumonectomy was performed in eNOS-deficient mice (eNOS-/-), and compensatory growth of the right lung was characterized throughout 14 days postpneumonectomy and compared with wild-type pneumonectomy and sham controls. Compensatory lung growth was severely impaired in eNOS-/- mice, as demonstrated by significant reductions in lung weight index, lung volume index, and volume of respiratory region. Also, pneumonectomy-induced increases in alveolar surface density and cell proliferation were prevented in eNOS-/- mice, indicating that eNOS plays a role in alveolar hyperplasia. Compensatory lung growth was also impaired in wild-type mice treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Together, these results indicate that eNOS is critical for compensatory lung growth.  相似文献   

12.
Recent studies suggest that VEGF may worsen pulmonary edema during acute lung injury (ALI), but, paradoxically, impaired VEGF signaling contributes to decreased lung growth during recovery from ALI due to neonatal hyperoxia. To examine the diverse roles of VEGF in the pathogenesis of and recovery from hyperoxia-induced ALI, we hypothesized that exogenous recombinant human VEGF (rhVEGF) treatment during early neonatal hyperoxic lung injury may increase pulmonary edema but would improve late lung structure during recovery. Sprague-Dawley rat pups were placed in a hyperoxia chamber (inspired O(2) fraction 0.9) for postnatal days 2-14. Pups were randomized to daily intramuscular injections of rhVEGF(165) (20 microg/kg) or saline (controls). On postnatal day 14, rats were placed in room air for a 7-day recovery period. At postnatal days 3, 14, and 21, rats were killed for studies, which included body weight and wet-to-dry lung weight ratio, morphometric analysis [including radial alveolar counts (RAC), mean linear intercepts (MLI), and vessel density], and lung endothelial NO synthase (eNOS) protein content by Western blot analysis. Compared with room air controls, hyperoxia increased pulmonary edema by histology and wet-to-dry lung weight ratios at postnatal day 3, which resolved by day 14. Although treatment with rhVEGF did not increase edema in control rats, rhVEGF increased wet-to-dry weight ratios in hyperoxia-exposed rats at postnatal days 3 and 14 (P < 0.01). Compared with room air controls, hyperoxia decreased RAC and increased MLI at postnatal days 14 and 21. Treatment with VEGF resulted in increased RAC by 181% and decreased MLI by 55% on postnatal day 14 in the hyperoxia group (P < 0.01). On postnatal day 21, RAC was increased by 176% and MLI was decreased by 58% in the hyperoxia group treated with VEGF. rhVEGF treatment during hyperoxia increased eNOS protein on postnatal day 3 by threefold (P < 0.05). We conclude that rhVEGF treatment during hyperoxia-induced ALI transiently increases pulmonary edema but improves lung structure during late recovery. We speculate that VEGF has diverse roles in hyperoxia-induced neonatal lung injury, contributing to lung edema during the acute stage of ALI but promoting repair of the lung during recovery.  相似文献   

13.
The balance between thrombosis and hemorrhage is carefully regulated. Nitric oxide (NO) is an important mediator of these processes, as it prevents platelet adhesion to the endothelium and inhibits platelet recruitment. Although endothelial NO synthase (eNOS)-deficient mice have decreased vascular reactivity and mild hypertension, enhanced thrombosis in vivo has not been demonstrated. To determine the role of endogenous NO in hemostasis, a model of carotid arterial injury and thrombosis was performed using eNOS-deficient and wild-type mice. Paradoxically, the eNOS-deficient animals had a prolongation of time to occlusion compared with the wild-type mice (P < 0.001). Consistent with this finding, plasma markers suggesting enhanced fibrinolysis [tissue plasminogen activator (t-PA) activity and antigen and D-dimer levels] were significantly elevated in eNOS-deficient animals. Vascular tissue expression of t-PA and platelet activity levels were not altered. In endothelial cells, t-PA is stored in Weibel-Palade bodies, and exocytosis of these storage granules is inhibited by NO. Thus in the absence of NO, release of Weibel-Palade body contents (and t-PA) could be enhanced; this observation is also supported by increased von Willebrand factor levels observed in eNOS-deficient animals. In summary, although eNOS deficiency attenuates vascular reactivity and increases platelet recruitment, it is also associated with enhanced fibrinolysis due to lack of NO-dependent inhibition of Weibel-Palade body release. These processes highlight the complexity of NO-dependent regulation of vascular homeostasis. Such compensatory mechanisms may partially explain the lack of spontaneous thrombosis, minimally elevated baseline blood pressure, and normal life span that are seen in animals deficient in a pivotal regulator of vascular patency.  相似文献   

14.
15.
Increased nitric oxide (NO) production is the cause of hypotension and shock during sepsis. In the present experiments, we have measured the contribution of endothelial (e) and inducible (i) nitric oxide synthase (NOS) to systemic NO production in mice under baseline conditions and upon LPS treatment (100 microg/10 g ip LPS). NO synthesis was measured by the rate of conversion of l-[guanidino-15N2]arginine to l-[ureido-15N]citrulline, and the contribution of the specific NOS isoforms was evaluated by comparing NO production in eNOS-deficient [(-/-)] and iNOS(-/-) mice with that in wild-type (WT) mice. Under baseline conditions, NO production was similar in WT and iNOS(-/-) mice but lower in eNOS(-/-) mice [WT: 1.2 +/- 0.2; iNOS(-/-): 1.2 +/- 0.2; eNOS(-/-): 0.6 +/- 0.3 nmol. 10 g body wt-1. min-1]. In response to the challenge with LPS (5 h), systemic NO production increased in WT and eNOS(-/-) mice but fell in iNOS(-/-) mice [WT: 2.7 +/- 0.3; eNOS(-/-): 2.2 +/- 0.6; iNOS(-/-): 0.7 +/- 0.1 nmol. 10 g body wt-1. min-1]. After 5 h of LPS treatment, blood pressure had dropped 14 mmHg in WT but not in iNOS(-/-) mice. The present findings provide firm evidence that, upon treatment with bacterial LPS, the increase of NO production is solely dependent on iNOS, whereas that mediated by cNOS is reduced. Furthermore, the data show that the LPS-induced blood pressure response is dependent on iNOS.  相似文献   

16.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

17.
Systemic vasodilation is the initiating event of the hyperdynamic circulatory state, being most likely triggered by increased levels of vasodilators, primarily nitric oxide (NO). Endothelial NO synthase (eNOS) is responsible for this event. We tested the hypothesis that gene deletion of eNOS and inducible NOS (iNOS) may inhibit the development of the hyperdynamic circulatory state in portal hypertensive animals. To test this hypothesis, we used mice lacking eNOS (eNOS-/-) or eNOS/iNOS (eNOS/iNOS-/-) genes. A partial portal vein ligation (PVL) was used to induce portal hypertension. Sham-operated animals were used as a control. Hemodynamic characteristics were tested 2 wk after surgery. As opposed to our hypothesis, PVL also caused significant reduction in peripheral resistance in eNOS-/- compared with sham animals (0.33 +/- 0.02 vs. 0.41 +/- 0.03 mmHg. min x kg body wt x ml(-1); P = 0.04) and in eNOS/iNOS-/- animals with PVL compared with that of the sham-operated group (0.44 +/- 0.02 vs. 0.54 +/- 0.04; P = 0.03). This demonstrates that, despite gene deletion of eNOS, the knockout mice developed hyperdynamic circulation. Compensatory vasodilator molecule(s) are upregulated in place of NO in the systemic and splanchnic circulation in portal hypertensive animals.  相似文献   

18.
Phosphodiesterase 4 (PDE4) is an intracellular enzyme specifically degrading cAMP, a second messenger exerting inhibitory effects on many inflammatory cells. To investigate whether GPD-1116 (a PDE4 inhibitor) prevents murine lungs from developing cigarette smoke-induced emphysema, the senescence-accelerated mouse (SAM) P1 strain was exposed to either fresh air or cigarette smoke for 8 wk with or without oral administration of GPD-1116. We confirmed the development of smoke-induced emphysema in SAMP1 [air vs. smoke (means +/- SE); the mean linear intercepts (MLI), 52.9 +/- 0.8 vs. 68.4 +/- 4.2 microm, P < 0.05, and destructive index (DI), 4.5% +/- 1.3% vs. 16.0% +/- 0.4%, P < 0.01]. Emphysema was markedly attenuated by GPD-1116 (MLI = 57.0 +/- 1.4 microm, P < 0.05; DI = 8.2% +/- 0.6%, P < 0.01) compared with smoke-exposed SAMP1 without GPD-1116. Smoke-induced apoptosis of lung cells were also reduced by administration of GPD-1116. Matrix metalloproteinase (MMP)-12 activity in bronchoalveolar lavage fluid (BALF) was increased by smoke exposure (air vs. smoke, 4.1 +/- 1.1 vs. 40.5 +/- 16.2 area/microg protein; P < 0.05), but GPD-1116 significantly decreased MMP-12 activity in smoke-exposed mice (5.3 +/- 2.1 area/microg protein). However, VEGF content in lung tissues and BALF decreased after smoke exposure, and the decrease was not markedly restored by oral administration of GPD-1116. Our study suggests that GPD-1116 attenuates smoke-induced emphysema by inhibiting the increase of smoke-induced MMP-12 activity and protecting lung cells from apoptosis, but is not likely to alleviate cigarette smoke-induced decrease of VEGF in SAMP1 lungs.  相似文献   

19.
Vascular endothelial growth factor (VEGF)-stimulated nitric oxide (NO) release from endothelial cells is mediated through the activation of VEGF receptor-2 (VEGFR-2). Herein, we have attempted to determine which autophosphorylated tyrosine residue on the VEGFR-2 is essential for VEGF-mediated endothelial nitric-oxide synthase (eNOS) activation and NO production from endothelial cells. Tyrosine residues 801, 1175, and 1214 of the VEGFR-2 were mutated to phenylalanine, and the mutated receptors were analyzed for their ability to stimulate NO production. We show, both in COS-7 cells cotransfected with the VEGFR-2 mutants and eNOS and in bovine aortic endothelial cells, that the Y801F-VEGFR-2 mutant is unable to stimulate NO synthesis and eNOS activation in contrast to the wild type, Y1175F-VEGFR-2, and Y1214F-VEGFR-2. However, the Y801F mutant retains the capacity to activate phospholipase C-gamma in contrast to the Y1175F-VEGFR-2. Interestingly, the Y801F-VEGFR-2, in contrast to the wild type receptor, does not fully activate phosphatidylinositol 3-kinase or recruit the p85 subunit upon receptor activation. This results in a complete incapacity of the Y801F-VEGFR-2 to stimulate Akt activation and eNOS phosphorylation on serine 1179 in endothelial cells. In addition, constitutive activation of Akt or a phosphomimetic mutant of eNOS (S1179D) fully rescues the inability of the Y801F-VEGFR-2 to induce NO release. Finally, we generated an antibody that specifically recognizes the phosphorylated form of tyrosine 801 of the VEGFR-2 and demonstrate that this residue is actively phosphorylated in response to VEGF stimulation of endothelial cells. We thus conclude that autophosphorylation of tyrosine residue 801 of the VEGFR-2 is essential for VEGF-stimulated NO production from endothelial cells, and this is primarily accomplished via the activation of phosphatidylinositol 3-kinase and Akt signaling to eNOS.  相似文献   

20.
Endothelin (ET) receptor antagonism protects from ischemia-reperfusion injury. We hypothesized that the cardioprotective effect is related to nitric oxide (NO) bioavailability. Buffer-perfused rat and mouse hearts were subjected to ischemia and reperfusion. At the onset of ischemia, the rat hearts received vehicle, the dual endothelin type A/type B (ETA/ETB) receptor antagonist bosentan (10 microM), the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 100 microM), the combination of bosentan and L-NMMA or the combination of bosentan, L-NMMA, and the NO substrate L-arginine (1 mM). Hearts from wild-type and endothelial NO synthase (eNOS)-deficient mice received either vehicle or bosentan. Myocardial performance, endothelial function, NO outflow, and eNOS expression were monitored. Bosentan significantly improved myocardial function during reperfusion in rats and in wild-type mice, but not in eNOS-deficient mice. The functional protection afforded by bosentan was inhibited by L-NMMA, whereas it was restored by L-arginine. Myocardial expression of eNOS (immunoblotting) increased significantly in bosentan-treated rat hearts compared with vehicle hearts. Recovery of NO outflow during reperfusion was enhanced in the bosentan-treated rat heart. The endothelium-dependent vasodilator adenosine diphosphate increased coronary flow by 18 +/- 9% at the end of reperfusion in the bosentan group, whereas it reduced coronary flow by 7 +/- 5% in the vehicle group (P < 0.001). The response to the endothelium-independent dilator sodium nitroprusside was not different between the two groups. In conclusion, the dual ETA/ETB receptor antagonist bosentan preserved endothelial and cardiac contractile function during ischemia and reperfusion via a mechanism dependent on endothelial NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号