首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

2.
The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.  相似文献   

3.
Using ultraviolet spectroscopy and equilibrium dialysis techniques, we have investigated the interaction of anticancer drug, daunomycin with calf thymus histone H(1) chromosomal protein in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA at room temperature. The UV spectroscopy results show that daunomycin (5.0-100 microM) decreases the absorbance of histone H(1) at 210-230 nm and induces hypochromicity in the absorption spectrum of the protein. The equilibrium dialysis data show that daunomycin binds to histone H(1) and the binding process is positive cooperative with two binding sites as Scatchard plot and Hill coefficient confirm it. The results suggest that daunomycin binds to histone H(1) and changes its conformation.  相似文献   

4.
Global analysis of circular dichroism multiwavelength data and time resolved fluorescence was applied to investigate the interaction of R(-)- and S(+)-ketoprofen (KP) with human serum albumin (HSA) in buffer solution at neutral pH. The most stable drug:protein adducts of 1 : 1 and 2 : 1 stoichiometry were characterized as regards the stability constants and the absolute circular dichroism spectra. The spectra of the diastereomeric 1 : 1 conjugates are negative with minima at ca. 350 nm for R(-)-KP and 330 nm for S(+)-KP, those of the 2 : 1 complexes are both negative with minimum at 340 nm and quite similar in shape to each other, thereby showing that the protein loses chiral recognition capability upon multiple binding. HSA intrinsic time resolved fluorescence data obtained exciting at 295 nm point to Trp 214 being located in the secondary binding site for both KP enantiomers. The photodegradation of the S(+)- and R(-)-KP:HSA complexes was studied by steady state photolysis using lambda(irr) > 320 nm. No decrease of the photodegradation quantum yields was observed in 1 : 1 complexes. An induction time for the photodegradation course in 2 : 1 complexes was observed. Transient absorption spectroscopy at lambda(exc) = 355 nm showed that triplet KP species were formed with stereo-differentiated lifetimes and high quantum yields (0.7-0.9). Secondary transients were consistent with the occurrence of photodecarboxylation and/or photoreduction within the protein matrix.  相似文献   

5.
Interaction of ribavirin with CT-DNA was investigated by emission, absorption, circular dichroism, and viscosity studies to determine the binding mode and binding constant of this drug with DNA. The calculated binding constant, K(b), obtained from UV-vis absorption studies was 4.6 × 10(3) M(-1). In fluorimetric studies, the enthalpy (ΔH<0) and entropy (ΔS>0) of the reaction between ribavirin and CT-DNA showed a hydrophobic interaction. In addition, in the circular dichroism spectrum, the drug induces a B → A structural transition of CT-DNA. These results demonstrate that ribavirin interacts with CT-DNA via the groove binding mode. It was observed that the drug has ability to cleave supercoiled plasmid DNA.  相似文献   

6.
The interaction of the antibiotic netropsin with calf thymus DNA, T4 DNA and poly(dA-dT) . poly(dA-dT) in complexes with sequential polypeptides containing repetitive lysine sequences and histone H1 was investigated using circular dichroism spectroscopy and equilibrium dialysis. Both soluble DNA-polypeptide complexes and insoluble complexes showed binding of netropsin. The possibility of displacement of polypeptides from DNA binding sites by competition with netropsin molecules was eliminated by experiments using 14C-labelled polypeptides. From the analysis of CD titration behavior as well as from the results of equilibrium dialysis studies it follows that netropsin does not compete with polypeptides for DNA binding sites, which suggests that these two ligands occupy different sites. Various explanations for minor differences in the CD behavior of the bound netropsin in the saturation region are also discussed.  相似文献   

7.
The silver(I) complex, [Ag(2,9-dimethyl-1,10-phenanthroline)(2)](NO(3)) · H(2)O, has been synthesized and characterized by physicochemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using emission, absorption, circular dichroism, viscosity measurements, and gel electrophoresis studies. The calculated binding constant, K(b), obtained from UV-vis absorption studies was 5.3 ± 0.2 × 10(4) M(-1). In fluorimetric studies, the enthalpy and entropy of the reaction between the complex and CT-DNA showed hydrophobic interaction. In addition, in the circular dichroism spectrum, silver(I) complex induces a B → A structural transition of CT-DNA. Gel electrophoresis studies demonstrated that this complex has ability to cleave the supercoiled plasmid DNA. All these results suggest that the complex interacts with CT-DNA via partial intercalative mode of binding.  相似文献   

8.
Studies on the interaction between Ag(+) and human serum albumin   总被引:6,自引:0,他引:6  
The interaction between Ag(+) and human serum albumin (HSA) has been intensively studied by means of equilibrium dialysis, ligand-to-metal charge transition (LMCT) bands, circular dichroism (CD) and Raman spectroscopy. Scatchard analysis of the results of equilibrium dialysis indicates the presence of two types of binding sites for Ag(+) on HSA, and the orders of magnitude of binding stability constants are found to be 10(5) and 10(4), respectively. During the binding process, a gradual increase in absorbance values of LMCT bands is observed with time-scanning UV absorption spectra, implying the Ag(I) centers are continually formed in HSA. The time-scanning CD spectra provide evidence that the binding of Ag(+) induces HSA to undergo a slow rearrangement of tertiary structure, and to change from the original conformation in the absence of Ag(+) (B-state) to conformation binding with Ag(+) (A-state). The rate constants and activation free energy of A-B transition are calculated. The Raman spectrum of Ag(I)-HSA system shows distinct vibration bands at 224 and 246 cm(-1) in the low-frequency region, which significantly reveal the formation of Ag-S and Ag-N bonds. In addition, the electrostatic interaction between Ag(+) and negatively charged oxygen is also detected with Raman spectroscopy.  相似文献   

9.
A series of thio- and selenopyrylium analogues of 2,4-di(4-dimethylaminophen-yl)-6-methylthiopyrylium iodide were prepared in five steps from 4-dimethylaminophenyl-propargyl aldehyde and the corresponding lithium acetylide. When bound to DNA, all of the dyes absorb at wavelengths >600nm, which avoids the hemoglobin band I maximum at 575nm. The binding of the series of dyes to double-stranded DNA was examined spectrophotometrically and by isothermal titration calorimetry to determine binding constants, by a topoisomerase I DNA unwinding assay, by competition dialysis with [poly(dGdC)](2) and [poly(dAdT)](2), and by ethidium bromide displacement studies to examine propensities for intercalation, and by circular dichroism studies. The dyes were found to show mixed binding modes.  相似文献   

10.
The interactions of a metal complex [Ru(phen)(2)PMIP](2+) {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Delta enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Lambda enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.  相似文献   

11.
The DNA interaction of derivatives of ellipticine with heterocyclic ring systems with three, four, or five rings and a dimethylaminoethyl side chain was studied. Optical spectroscopy of drug complexes with calf thymus DNA, poly [(dA-dT) · (dA-dT)], or poly [(dG-dC) · (dG-dC)] showed a 10 nm bathochromic shift of the light absorption bands of the pentacyclic and tetracyclic compounds upon binding to the nucleic acids, which indicates binding by intercalation. For the tricyclic compound a smaller shift of 1–3 nm was observed upon binding to the nucleic acids. Flow linear dichroism studies show that the geometry of all complexes is consistent with intercalation of the ring system, except for the DNA and poly [(dG-dC) · (dG-dC)] complexes of the tricyclic compound, where the average angle between the drug molecular plane and the DNA helix axis was found to be 65°. One-dimensional 1H-nmr spectroscopy was used to study complexes between d(CGCGATCGCG)2 and the tricyclic and pentacyclic compounds. The results on the pentacyclic compound show nonselective broadening due to intermediate chemical exchange of most oligonucleotide resonances upon drug binding. The imino proton resonances are in slow chemical exchange, and new resonances with upfield shifts approaching 1 ppm appear upon drug binding, which supports intercalative binding of the pentacyclic compound. The results on the tricyclic compound show more rapid binding kinetics and very selective broadening of resonances. The data suggest that the tricyclic compound is in an equilibrium between intercalation and minor groove binding, with a preference to bind close to the AT base pairs with the side chain residing in the minor groove. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The interactions of complex [Ru(bpy)(2)(hnip)](2+) (1) {bpy?=?2,2'-bipyridine, hnip?=?2-(2-hydroxy-1-naphthyl)imidazo[4,5-f][1,10]phenanthroline} with calf thymus DNA and yeast tRNA were investigated by UV-vis spectroscopy, fluorescence spectroscopy, viscosity, equilibrium dialysis, and circular dichroism. In addition, the antitumor activities of complex 1 were evaluated with MTT method. These results indicate that the structures of DNA and RNA have significant effects on the binding behaviors of complex 1. Further, complex 1 demonstrates different antitumor activities against selected cancer cell lines in vitro.  相似文献   

13.
The binding geometry of a heterocyclic compound, 4-(2-diethylamino-ethylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (A1) to CT DNA was studied by molecular spectroscopy. Deduced from SYBR Green-DNA melt curve, UV-vis spectroscopy, and fluorescence studies, there were two different interaction mechanisms involved in the whole interaction process depending on the R-value (R, the molar ratio of A1 to CT DNA base pairs). The value R = 0.20 was the turning point. The induced circular dichroism (ICD) spectra of A1 complexed with CT DNA, poly[(G-C)2] and poly[(A-T)2] showed when R < or = 0.20, A1 intercalated into CT DNA and the intercalation orientation of A1 to the dyad axis of DNA double-helix was heterogeneous. When R > 0.20, stacking of A1 on surface helix of DNA occurred driven by the protonation of amidogen group in the N,N-diethyldiamine substitution of A1, which was illustrated by the changes of A1-DNA geometry in different pH solutions. The intrinsic circular dichroism (CD) spectra showed the conformation of DNA converted from the B-form to A-like conformation due to the A1 intercalation.  相似文献   

14.
A flow linear dichroism technique is utilized to study the unwinding of supercoiled DNA induced by the binding of ethidium bromide (EB) and proflavine (PF) at different ratios r (drug added/DNA base). In the case of either EB or PF bound to linear calf thymus DNA, the reduced linear dichroism signals LD/A (LD: linear dichroism; A: absorbance, both measured at the same wavelength), determined at 258, and 520 or 462 nm (corresponding to contributions predominantly from the partially oriented DNA bases, intercalated EB, or PF, respectively) are nearly independent of drug concentration. In the case of supercoiled DNA, the magnitude of LD/A at 258 nm first increases to a maximum value near r = 0.04-0.05, and then decreases as r is increased further, mimicking the behavior of the sedimentation coefficients, viscosities, and gel electrophoresis patterns measured by other workers at similar values of r. However, LD/A at 520 nm, which is due to DNA-bound EB molecules, is constant within the range of r values of 0.02-0.06 in which the magnitude of LD/A determined at 258 nm due to the DNA bases exhibits a pronounced maximum. In contrast, in the case of PF, the magnitudes of LD/A determined at 258 or 462 nm are characterized by similar dependencies on r, both exhibiting pronounced maxima at r = 0.05; this parallel behavior is expected according to a simple intercalation model in which the DNA bases and drug molecules are stacked on top of one another, and in which both are oriented to similar extents in the flow gradient. The unexpected differences in the dependencies of (LD/A)258 and (LD/A)520 on r in the case of EB bound to supercoiled DNA, are attributed to differences in the net overall alignment of the EB molecules and DNA bases in the flow gradient. The magnitude of the LD signal at 258 nm reflects the overall degree of orientation of the supercoiled DNA molecules that, in turn, depends on their hydrodynamic shapes and sizes; the LD signals characterizing the bound EB molecules may reflect this orientation also, as well as the partial alignment of individual DNA segments containing bound EB molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Association of fascaplysin with double-stranded calf thymus DNA was investigated by means of isothermal titration calorimetry, absorption spectroscopy, and circular dichroism. The UV spectroscopic data could be well interpreted in terms of a two-site model for the binding of fascaplysin to DNA revealing affinity constants of K1 = 2.5 x 10(6) M(-1) and K2 = 7.5 x 10(4) M(-1) (base pairs of DNA). Based on the typical change observed in the absorption and circular dichroism spectra, intercalation of fascaplysin is regarded as the major binding mode. The calorimetric titration curves showed an exothermic reaction which was exhausted at a 2:1 base pair/drug; ratio. This finding is in agreement with an intercalation model comprising nearest neighbor exclusion. In addition, significantly weaker non-intercalative DNA interactions can be observed at high drug concentration. By comparison of all these data with the binding behavior of known intercalating agents, it is concluded that fascaplysin intercalates into DNA.  相似文献   

16.
A novel bridging ligand bdptb(2,2'-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-4,4'-bipyridine) and it's chiral diruthenium(II) complex DeltaDelta- and LambdaLambda-[Ru(bpy)2(bdptb)Ru(bpy)2]4+ (Ru2) have been synthesized and characterized by electrospray mass spectra, 1H NMR, UV/visible and circular dichroism spectra. Binding behavior of these dimeric complexes with calf thymus DNA have been investigated by absorption spectra, viscosity measurements, equilibrium dialysis experiments. The electronic absorption spectra hypochromism at the metal-ligand charge transfer of the DeltaDelta- and LambdaLambda-enantiomer are 26.4%, and 40%, and bathochromism of 13.5, and 14 nm in sequence. Equilibrium dialysis experiments results show also the binding-DNA of LambdaLambda-enantiomer is stronger than DeltaDelta-enantiomer. The increasing amounts of the novel dimeric ruthenium(II) complexes on the relative viscosities of calf thymus DNA is smaller than that of the classic intercalators such as [Ru(bpy)2(dppz)]2+ and larger than that of the non-classic intercalators such as Delta-[Ru(phen)3]2+. The experiments suggest the dimeric ruthenium(II) complex may be bound to DNA by groove binder.  相似文献   

17.
Panja S  Jana B  Aich P  Basu T 《Biopolymers》2008,89(7):606-613
With increasing addition of Escherichia coli LPS to calf thymus DNA, both dissolved in CaCl2, absorption maxima of DNA at 260 nm decreased gradually with the appearance of isosbastic points at both ends of spectra, which implied some binding between DNA and LPS. Hill plot of absorbance data showed that the binding interaction was positive cooperative in nature. For any fixed concentration of DNA and LPS, extent of interaction increased as concentration of CaCl2 was raised from 1.0 to 100 mM, signifying the electrostatic nature of the interaction, mediated through Ca2+ ion. Stepwise addition of EDTA, a chelating agent for divalent cations, to DNA-LPS bound complex gradually reversed the spectral shift with increase in absorbance at 260 nm, which implied opening up of the complex, that is, reversible nature of the interaction. Circular dichroism spectral changes of DNA by the addition of LPS indicated partial transition of DNA from B to A form. Isothermal titration calorimetric (ITC) study showed that the DNA-LPS binding was an exothermic and enthalpy-driven phenomenon. Moreover, in the presence of 100 mM CaCl2, binding constant of the interaction was found to be 2.6 x 10(4) M(-1) and 3.1 x 10(4) M(-1) from the analysis of Hill plot and ITC result, respectively. DNA-melting study showed that the LPS binding had increased the melting temperature of DNA, indicating more stabilization of DNA double helix. The binding of LPS to DNA made the complex resistant to digestion with endonucleases EcoRI and DNase I.  相似文献   

18.
Terry CA  Fernández MJ  Gude L  Lorente A  Grant KB 《Biochemistry》2011,50(47):10375-10389
This paper describes the synthesis of a new 9-aminomethylanthracene dye N-substituted with a pyridinylpolyamine side chain (4). The effects of NaCl and KCl on anthracene/DNA interactions were then studied, with the goal of simulating the conditions of high ionic strength that a DNA photosensitizer might encounter in the cell nucleus (~150 mM of NaCl and 260 mM of KCl). As exemplified by methylene blue (5), the expected effect of increasing ionic strength is to decrease DNA binding and photocleavage yields. In contrast, the addition of 150 mM of NaCl in combination with 260 mM of KCl to photocleavage reactions containing micromolar concentrations of 4 triggers the conversion of supercoiled, nicked, and linear forms of pUC19 plasmid into a highly degraded band of DNA fragments (350 nm hν, pH 7.0). Circular dichroism spectra point to a correlation between salt-induced unwinding of the DNA helix and the increase in DNA photocleavage yields. The results of circular dichroism, UV-vis absorption, fluorescence emission, thermal denaturation, and photocleavage inhibition experiments suggest that the combination of salts causes a change in the DNA binding mode of 4 from intercalation to an external interaction. This in turn leads to an increase in the anthracene-sensitized production of DNA-damaging reactive oxygen species.  相似文献   

19.
EDTA not only blocks the horseradish peroxidase (HRP)-catalyzed iodide oxidation to I-3 but also causes an enzymatic conversion of oxidized iodine species to iodide (Banerjee, R. K., De, S. K., Bose, A. K., and Datta, A. G. (1986) J. Biol. Chem. 261, 10592-10597). The EDTA effect on both of these reactions can be withdrawn with a higher concentration of iodide and not with H2O2. Spectral studies indicate a possible interaction of EDTA with HRP as evidenced by the formation of modified compound 1 with H2O2 at 416 nm instead of 412 nm in the absence of EDTA. EDTA causes a hypochromic effect on HRP at 402 nm which undergoes the bathochromic red shift to 416 nm by H2O2. The addition of iodide to the 416 nm complex causes the reappearance of the Soret band of HRP at 402 nm. Among various EDTA analogues tested, N-N-N'-N'-tetramethylethylenediamine (TEMED) is 80% as effective as EDTA in the conversion of I-3 to iodide and produces a spectral shift of HRP similar to EDTA. Interaction of EDTA with HRP is further indicated by the hyperchromic effect of HRP and H2O2 on the absorption of EDTA at 212 nm. The addition of oxidized iodine species produces a new peak at 230 nm due to formation of iodide. EDTA at a higher concentration can effectively displace radioiodide specifically bound to HRP indicating its interaction at the iodide-binding site. The enzyme, after radioiodide displacement with EDTA, shows a characteristic absorption maximum at 416 nm on the addition of H2O2, indicating that EDTA is bound with the enzyme. Both positive and negative circular dichroism spectra of HRP and the HRP.H2O2 complex, characteristic of heme absorption, are altered by EDTA, suggesting an EDTA-induced conformational change at or near the heme region. This is associated with a change of affinity of heme toward H2O2 and azide. It is postulated that EDTA interacts at the iodide-binding site of the HRP inducing a new conformation that blocks iodide oxidation but is suitable to convert iodine to iodide by a redox reaction with H2O2.  相似文献   

20.
The C-terminal regions of thrombospondins (TSPs) contain three elements, EGF-like modules (E), a series of Ca(2+)-binding repeats (Ca), and a C-terminal sequence (G). We have looked for interactions among these elements in four recombinant proteins based on human TSP-2: E3CaG-2, CaG-2, E3Ca-2, and Ca-2. When bound Ca(2+) was assayed by atomic absorption spectroscopy or an equilibrium dialysis protocol in which Ca(2+) was removed from the proteins prior to equilibrium dialysis, E3CaG-2 bound 22-27 Ca(2+), CaG-2 bound 17-20 Ca(2+), and E3Ca-2 and Ca-2 bound 14-20 Ca(2+). Approximately 10 of the bound Ca(2+) in E3CaG-2 were exchangeable. The far UV circular dichroism (CD) spectrum of Ca(2+)-replete E3CaG-2 contained a strong negative band at 203 nm attributable to Ca and a less intense negative band at 218 nm attributable to Ca and G. Chelation of Ca(2+) with EDTA shifted the 203 nm band of all four proteins and the 218 nm band of E3CaG-2 and CaG-2 to less negative positions. The apparent EC50 for the far UV CD transition was 0.22 mM Ca(2+) for all proteins, indicating that Ca(2+) binding to Ca is primarily responsible for the CD change. Near UV CD and intrinsic fluorescence revealed that the tryptophan residues in G are sensitive to changes in Ca(2+). Differential scanning calorimetry of the proteins in 2 mM Ca(2+) showed that E3CaG-2 melts with two transitions, 44-51 degrees C and 75-83 degrees C. The lower transition required G, while the higher transition required Ca. Both transitions were stabilized in constructs containing E3. These results indicate that E3, Ca, and G function as a complex structural unit, and that the structures of both Ca and G are influenced by the presence or absence of Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号