首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antigen loading of MHC class I molecules in the endocytic tract   总被引:4,自引:1,他引:3  
Major histocompatibility complex (MHC) class I molecules bind antigenic peptides that are translocated from the cytosol into the endoplasmic reticulum by the transporter associated with antigen processing. MHC class I loading independent of this transporter also exists and involves peptides derived from exogenously acquired antigens. Thus far, a detailed characterization of the intracellular compartments involved in this pathway is lacking. In the present study, we have used the model system in which peptides derived from measles virus protein F are presented to cytotoxic T cells by B-lymphoblastoid cells that lack the peptide transporter. Inhibition of T cell activation by the lysosomotropic drug ammoniumchloride indicated that endocytic compartments were involved in the class I presentation of this antigen. Using immunoelectron microscopy, we demonstrate that class I molecules and virus protein F co-localized in multivesicular endosomes and lysosomes. Surprisingly, these compartments expressed high levels of class II molecules, and further characterization identified them as MHC class II compartments. In addition, we show that class I molecules co-localized with class II molecules on purified exosomes, the internal vesicles of multivesicular endosomes that are secreted upon fusion of these endosomes with the plasma membrane. Finally, dendritic cells, crucial for the induction of primary immune responses, also displayed class I in endosomes and on exosomes.  相似文献   

3.
Background: Neuroblastoma is the most common solid extracranial tumor in childhood, still with poor survival rates for metastatic disease. Neuroblastoma cells are of neuroectodermal origin and express a number of cancer germline (CG) antigens. These CG antigens may represent a potential target for immunotherapy such as peptide-based vaccination strategies. Objective: The purpose of this study was to analyze the presence of MAGE-A1, MAGE-A3/A6, and NY-ESO-1 on an mRNA and protein level and to determine the expression of MHC class I and MHC class II antigens within the same tumor specimens. Methods: A total of 68 tumors were available for RT-PCR, and 19/68 tumors were available for immunohistochemical (IHC) analysis of MAGE-A1, MAGE-A3/A6, and NY-ESO-1. In parallel, the same tumors were stained with a panel of antibodies for MHC class I and MHC class II molecules. Results: Screening of 68 tumor specimens by RT-PCR revealed expression of MAGE-A1 in 44%, MAGE-A3/A6 in 21%, and NY-ESO-1 in 28% of cases. Immunohistochemistry for CG antigens of selected tumors showed good agreement between protein and gene expression. However, staining revealed a heterogeneous expression of CG antigens. None of the selected tumors showed MHC class I or MHC class II expression. Conclusions: mRNA expression of MAGE-A1, MAGE-A3/A6, and NY-ESO-1 is congruent with the protein expression as determined by immunohistochemistry. The heterogeneous CG-antigen expression and the lack of MHC class I and II molecules may have implications for T-cell–mediated immunotherapy in neuroblastoma.  相似文献   

4.
Advancements in high‐resolution HPLC and mass spectrometry have reinvigorated the application of this technology to identify peptides eluted from immunopurified MHC class I molecules. Three melanoma cell lines were assessed using w6/32 isolation, peptide elution and HPLC purification; peptides were identified by mass spectrometry. A total of 13 829 peptides were identified; 83–87% of these were 8–11 mers. Only approximately 15% have been described before. Subcellular locations of the source proteins showed even sampling; mRNA expression and total protein length were predictive of the number of peptides detected from a single protein. HLA‐type binding prediction for 10 078 9/10 mer peptides assigned 88–95% to a patient‐specific HLA subtype, revealing a disparity in strength of predicted binding. HLA‐B*27‐specific isolation successfully identified some peptides not found using w6/32. Sixty peptides were selected for immune screening, based on source protein and predicted HLA binding; no new peptides recognized by antimelanoma T cells were discovered. Additionally, mass spectrometry was unable to identify several epitopes targeted ex vivo by one patient's T cells.  相似文献   

5.
The expression of MHC class II (MHC-II) on the surface of antigen-presenting cells, such as dendritic cells (DCs), is tightly regulated during cellular activation. Many cells, including DCs, are activated following stimulation of innate Toll-like receptors (TLRs) by products of microorganisms. In the resting (immature) state, MHC-II is ubiquitinated in immature DCs and is rapidly degraded; however, after activation of these cells with MyD88-dependent TLR ligands, MHC-II ubiquitination is blocked, and MHC-II survival is prolonged. We now show that DC activation using MyD88-dependent TLR ligands, MyD88-independent TLR ligands, and even infection with the intracellular parasite Toxoplasma gondii leads to identical changes in MHC-II expression, ubiquitination, and surface stability, revealing a conserved role for enhanced MHC-II stability after DC activation by different stimuli.  相似文献   

6.
7.
Major histocompatibility complex (MHC) molecules serve as peptide receptors. These peptides are derived from processed cellular or extra-cellular antigens. The MHC gene complex encodes two major classes of molecules, MHC class I and class II, whose function is to present peptides to CD8+ (cytotoxic) and CD4+ (helper) T cells, respectively. The genes encoding both classes of MHC molecules seem to originate from a common ancestral gene. One of the hallmarks of the MHC is its extensive polymorphism which displays locus and allele-specific characteristics among the various MHC class I and class II genes. Because of its central role in immunosurveillance and in various disease states, the MHC is one of the best studied genetic systems. This review addresses several aspects of MHC class I and class II gene regulation in human and in particular, the contribution to the constitutive and cytokine-induced expression of MHC class I and II genes of MHC class-specific regulatory elements and regulatory elements which apparently are shared by the promoters of MHC class I and class II genes. Received: 12 January 1998  相似文献   

8.
9.
Antigen processing and presentation by class I MHC molecules generally require assembly with peptide epitopes generated by the proteasome and transported into the ER by the transporters associated with antigen presentation (TAP). Recently, TAP-independent pathways supporting class I MHC-mediated presentation of exogenous antigens, as well as of endogenously synthesized viral antigens, were described. We now characterize a TAP-independent pathway that is operative in both TAP1- and TAP2-deficient Adenovirus (Ad)-transformed fibroblast cell lines. To the best of our knowledge, this is the first time that the existence of such a pathway has been described in non-infected cells that do not belong to the hematopoietic lineage. We show that this pathway is proteasome-independent and chloroquine-sensitive. Cell surface expression of these TAP-independent class I complexes is modulated by tapasin levels and is enhanced by IFN-gamma. The data imply that IFN-gamma increases the relative level of TAP-independent high affinity class I complexes that exit the ER on their way to the cell surface and to vacuolar compartments where peptide cleavage/exchange might take place before recycling to the cell surface. Since both TAP and tapasin expression are altered in numerous tumors and in virus-infected cells, TAP-independent class I complexes may be a valuable target source for immune responses.  相似文献   

10.
Analysis of the crystal structure of human class II (HLA-DR1) molecules suggests that the heterodimer may be further ordered as a dimer of heterodimers (superdimer), leading to the hypothesis that T cell receptor dimerisation is a mechanism for initiating signaling events preceding T cell activation. The interface between pairs of molecules is stabilised by both salt bridges, polar and hydrophobic interactions. The residues that form the superdimer interface occur in three areas distinct from the antigen-binding groove. They can be defined as follows: region 1, - contacts in the helix of the 1 domain; region 2, - contacts near the 1/2 domain junction and region 3; - contacts in the 2/2 domains adjacent to the plasma membrane. To determine whether salt bridges and polar interactions formed within these regions are involved in the immune function of the murine MHC class II molecule, I-Ab, appropriate residues in both the and chain were identified and mutated to uncharged alanine. Cell lines transfected with different combinations of mutated and chains were generated and tested for MHC class II expression, peptide binding capabilities, and ability to present antigenic peptide to an OVA-specific T cell hybridoma. With the exception of two residues in region 2, the substitutions tested did not modulate MHC class II expression, or peptide binding function. When tested for ability to present peptide to an antigen-specific T cell hybridoma, with the exception of mutations in region 2, the substitutions did not appear to abrogate the ability of I-Ab to stimulate the T cells. These results suggest that mutation of residues in region 2 of the putative superdimer interface have a gross effect on the ability of I-Ab to be expressed on the cell surface. However, abrogation of salt bridges in region 1 and 3 do not influence I-Ab cell surface expression, peptide binding or ability to stimulate antigen-specific T cells.  相似文献   

11.
The content of stem cells was analysed in bone marrow samples from 75 multiple myeloma patients. In unstimulated bone marrow the percentage of CD34+cells was significantly reduced in 11 patients previously treated with melphalan-prednisolone (MP)(median= 0.15%) compared to median 0.87% in 31 untreated patients (P=0.0001). The bone marrow cellularity in the two groups did not differ. There was no correlation between the number of courses or total dose of melphalan and content of CD34+cells in the bone marrow. The clonogenicity as, well as the ability to expand the marrow stem cell pool during growth factor treatment were also reduced in MP treated patients compared to untreated patients. Analysis of different subsets of CD34+ cells revealed no influence on the pre B cell compartment in the bone marrow by MP treatment, but the committed stem cells (CD34+CD38+) were reduced more than the uncommitted stem cells (CD34+CD38—) in the MP treated group compared to the untreated patients. Mobilisation to and harvest of total number of CD34+ cells from peripheral blood was also reduced in the MP treated group. There was, however, no difference in the distribution between CD34+CD38+and CD34+CD38—populations in the leukapheresis products in the untreated and the melphalan-treated group, suggesting selective mobilisation of CD34+CD38+ cells and/or differentiation of CD34+ CD38-cells during growth factor stimulation. We conclude that melphalan decreased the number of stem cells in the bone marrow, the ability to expand the stem cell pool and mobilise stem cells to the pheripheral blood.  相似文献   

12.
Cladribine (2CdA), a synthetic purine analog interfering with DNA synthesis, is a medication used to treat hairy cell leukemia (HCL) and B-cell chronic lymphocytic leukemia. Entinostat, a selective class I histone deacetylase (HDAC) inhibitor, shows antitumor activity in various human cancers, including hematological malignancies. The therapeutic potential of cladribine and entinostat against multiple myeloma (MM) remains unclear. Here we investigate the combinatorial effects of cladribine and entinostat within the range of their clinical achievable concentrations on MM cells. While either agent alone inhibited MM cell proliferation in a dose-dependent manner, their combinations synergistically induced anti-proliferative/anti-survival effects on all MM cell lines (RPMI8226, U266, and MM1.R) tested. Further studies showed that the combinations of cladribine and entinostat as compared to either agent alone more potently induced mitotic catastrophe in the MM cells, and resulted in a marked increase of the cells at G1 phase associated with decrease of Cyclin D1 and E2F-1 expression and upregulation of p21waf?1. Apoptotic ELISA and western blot analyses revealed that the combinations of cladribine and entinostat exerted a much more profound activity to induce apoptosis and DNA damage response, evidenced by enhanced phosphorylation of histone H2A.X and the DNA repair enzymes Chk1 and Chk2. Collectively, our data demonstrate that the combinations of cladribine and entinostat exhibit potent activity to induce anti-proliferative/anti-survival effects on MM cells via induction of cell cycle G1 arrest, apoptosis, and DNA damage response. Regimens consisting of cladribine and/or entinostat may offer a new treatment option for patients with MM.

Abbreviations: MM, multiple myeloma; HCL, hairy cell leukemia; HDAC, histone deacetylase; Ab, antibody; mAb, monoclonal Ab; FBS, fetal bovine serum; CI, combination index; PAGE, polyacrylamide gel electrophoresis; ELISA, enzyme-linked immunosorbent assay; PARP, poly(ADP-ribose) polymerase; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,inner salt  相似文献   

13.
In multiple myeloma (MM), malignant plasma cells produce large amounts of antibodies and have highly active protein translational machinery. It is not known whether regulation of the abundance and aminoacylation (charging) of transfer RNA (tRNA) takes place in myeloma cells to accommodate for the increased amount of protein translation. Using tRNA-specific microarrays, we demonstrate that tRNA levels are significantly elevated in MM cell lines compared to normal bone marrow cells. We furthermore show that the addition of the proteasome inhibitor, bortezomib (Velcade™, PS-341) results in decreased charging levels of tRNAs, in particular those coding for hydrophobic amino acids. These results suggest that tRNA properties are altered in MM to accommodate for its increased need for protein translation, and that proteasome inhibition directly impacts protein synthesis in MM through effects on tRNA charging.  相似文献   

14.
Serological and molecular diversity in the cattle MHC class I region   总被引:2,自引:2,他引:0  
Information on major histocompatibility complex (MHC) diversity in cattle is important to aid our understanding of immune responses and may contribute to maintenance of healthy cattle populations. Equally, understanding the mechanisms involved in generating this diversity may shed light on the complex nature of mammalian MHC evolution. The aim of this study was to assess molecular and serological variation within cattle MHC class I molecules and to study the mechanisms generating diversity. To address this aim, sequence variation was examined in 12 serologically assigned alleles from three putative loci and correlated with monoclonal antibody (mAb) binding data. The results demonstrate that both alloantisera and mAbs often fail to distinguish gene products that differ by a significant number of amino acids. Conversely, some mAbs could distinguish alleles differing by only one or two amino acids. Examination of the sequences demonstrates sharing of motifs between alleles, some encoded at distinct loci, supporting the occurrence of interlocus recombination within the cattle MHC class I region. The implications of this for MHC sequence diversity, and functional capability, are discussed.  相似文献   

15.
16.
Some immune system proteins have recently been implicated in the development and plasticity of neuronal connections. Notably, proteins of the major histocompatibility complex 1 (MHC class 1) have been shown to be involved in synaptic plasticity in the hippocampus and the development of projection patterns in the visual system. We examined the possible role for the MHC class 1 proteins in one well-characterized example of synaptic exuberance and subsequent refinement, the climbing fiber (CF) to Purkinje cell (PC) synapse. Cerebella from adult mice deficient for two MHC genes, H2-D1 and H2-K1, and for beta2-microglobulin gene were examined for evidence of deficient elimination of supernumerary CF synapses on their PCs. Electrophysiological and morphological evidence showed that, despite the absence of these MHC class 1 molecules, adult PCs in these transgenic mice are monoinnervated as in wild-type animals. These findings indicate that, at the level of restriction of afferent number at this synapse, functional MHC class 1 proteins are not required.  相似文献   

17.
18.
The human cytomegalovirus (HCMV) gene product US11 dislocates MHC I heavy chains from the endoplasmic reticulum (ER) and targets them for proteasomal degradation in the cytosol. To identify the structural and functional domains of US11 that mediate MHC class I molecule degradation, we constructed truncated mutants and chimeric proteins, and analyzed these to determine their intracellular localization and their ability to degrade MHC class I molecules. We found that only the luminal domain of US11 was essential to confer ER localization to the protein but that the ability to degrade MHC class I molecules required both the transmembrane domain and the luminal domain of US11. By analyzing a series of point mutants of the transmembrane domain, we were also able to identify Gln(192) and Gly(196) as being crucial for the functioning of US11, suggesting that these residues may play a critical role in interacting with the components of the protein degradation machinery.  相似文献   

19.
20.
《The Journal of cell biology》1994,125(6):1225-1237
We have compared the intracellular transport and subcellular distribution of MHC class II-invariant chain complexes in a wild-type HLA-DR3 homozygous cell line and a mutant cell line, T2.DR3. The latter has a defect in antigen processing and accumulates HLA-DR3 molecules associated with an invariant chain-derived peptide (CLIP) rather than the normal complement of peptides derived from endocytosed proteins. We find that in the wild-type cells, CLIP is transiently associated with HLA-DR3 molecules, suggesting that the peptide is a normal class II- associated intermediate generated during proteolysis of the invariant chain. In the mutant cell line proteolysis of the invariant chain is less efficient, and HLA-DR3/CLIP complexes are generated much more slowly. Examination of the mutant cell line by immunoelectronmicroscopy shows that class II-invariant chain complexes accumulate intracellularly in large acidic vesicles which contain lysosomal markers, including beta-hexosaminidase, cathepsin D, and the lysosomal membrane protein CD63. The markers in these vesicles are identical to those seen in the class II-containing vesicles (MIICs) seen in the wild- type cells but the morphology is drastically different. The vesicles in the mutant cells are endocytic, as measured by the internalization of BSA-gold conjugates. The implication of these findings for antigen processing in general and the nature of the mutation in particular are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号