首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Translation initiation on poliovirus and encephalomyocarditis virus (EMCV) mRNAs occurs by a cap-independent mechanism utilizing an internal ribosomal entry site (IRES). However, no unifying mechanism for AUG initiation site selection has been proposed. Analysis of initiation of mRNAs translated in vitro has suggested that initiation of poliovirus mRNA translation likely involves both internal binding of ribosomes and scanning to the first AUG which is in a favorable context for initiation. In contrast, internal initiation on EMCV mRNA may not utilize scanning, since ribosomes bind directly or very close to the initiation codon AUG-11. We have studied in vivo the sequence requirements for internal initiation around the EMCV initiation codon, both in monocistronic and in dicistronic mRNAs. Our studies show that the upstream AUG-10 is normally not used and that there is no specific sequence requirement for nucleotides between AUG-10 and AUG-11. However, the sequence context of AUG-11 does influence the efficiency of initiation at AUG-11. Efficient IRES-mediated internal initiation at AUG-11 exhibits a requirement for an adenine in the -3 position, similar to cap-dependent initiation. These results support a model for internal initiation on EMCV mRNA in which scanning starts at or near AUG-11. Although initiation primarily occurs at AUG-11, initiation at multiple downstream AUG codons can be detected. In addition, a poor sequence context around AUG-11 results in increased initiation at one or more downstream AUG codons, indicative of leaky scanning or jumping by the ribosome from AUG-11 mediated by the EMCV IRES.  相似文献   

3.
The internal ribosome entry segment (IRES) of picornaviruses consists of approximately 450 nt of 5'-untranslated region, terminating at the 3' end with an approximately 25 nt element consisting of an absolutely conserved UUUC motif followed by a more variable pyrimidine-rich tract and G-poor spacer, and finally an AUG triplet, which is considered to be the actual ribosome entry site. Events following entry at this site differ among picornaviruses: in encephalomyocarditis virus (EMCV) virtually all ribosomes initiate translation at this site (AUG-11); in foot-and-mouth-disease virus (FMDV), one-third of the ribosomes initiate at this AUG (the Lab site), and the rest at the next AUG 84 nt downstream (Lb site); and in poliovirus (PV), the AUG at the 3' end of the IRES (at nt 586 in PV type 1) is considered to be a silent entry site, with all ribosomes initiating translation at the next AUG downstream (nt 743). To investigate what determines this different behavior, chimeras were constructed with a crossover at the conserved UUUC motif: the body of the IRES, the sequences upstream of this UUUC motif, was derived from one species, and the downstream sequences from another. When the body of the FMDV or PV IRESes was replaced by that of EMCV, there was a marked increase in the absolute and relative frequency of initiation at the upstream AUG, the Lab site of FMDV and 586AUG of PV, respectively. In contrast, when the body of the EMCV IRES was replaced by that of PV, initiation occurred with no preference at three AUGs: the normal site (AUG-11), AUG-10 situated 8 nt upstream, and AUG-12, which is 12 nt downstream. Thus although the context of the AUG at the 3' end of the IRES may influence initiation frequency at this site, as was shown by improving the context of 586AUG of PV, the behavior of the ribosome is also highly dependent on the nature of the upstream IRES. Delivery of the ribosome to this AUG in an initiation-competent manner is particularly efficient and accurate with the EMCV IRES.  相似文献   

4.
C U Hellen  T V Pestova    E Wimmer 《Journal of virology》1994,68(10):6312-6322
Initiation of poliovirus translation is mediated by a large, structured segment of the 5' nontranslated region known as the internal ribosome entry site (IRES) and normally occurs 155 nucleotides (nt) downstream of the IRES at AUG743 (the AUG at nucleotide 743). Functional AUG codons introduced at nt 611 or 614 reduced initiation at AUG743 by 10 to 40% in vitro but had no effect on virus phenotype. To investigate the role of the nt 586-743 spacer in greater detail, four intervening termination codons were removed, and an additional AUG triplet at nt 683 was introduced by nucleotide substitution. Initiation at AUG743 was reduced by only 50 to 80%, depending on the number of upstream initiation codons. Initiation at AUG743 was also reduced following insertion of a stable hairpin at nt 630, but the reduction was modest in an ascites carcinoma cell extract. Initiation was more frequent at AUG743 than at AUG683 if mRNAs contained either an upstream initiation codon or the stable hairpin. These results suggested that not all initiation events at AUG743 can be accounted for by a scanning-dependent mechanism. Translation of bicistronic mRNAs in which the intercistronic spacer contained nt 630 to 742 of the poliovirus 5' nontranslated region indicated that these residues are not able to act as an entry point for ribosomes independently of the IRES. Insertion of increasingly longer sequences immediately downstream of the stable hairpin progressively reduced initiation at AUG743 without affecting initiation at AUG683. These results are discussed in terms of a model for initiation of poliovirus translation in which a complex RNA superstructure upstream of nt 586 promotes ribosome binding at an entry point determined by specific downstream cis-acting elements.  相似文献   

5.
Translation initiation site usage on the human rhinovirus 2 internal ribosome entry site (IRES) has been examined in a mixed reticulocyte lysate/HeLa cell extract system. There are two relevant AUG triplets, both in a base-paired hairpin structure (domain VI), with one on the 5′ side at nucleotide (nt) 576, base paired with the other at nt 611, which is the initiation site for polyprotein synthesis. A single residue was inserted in the apical loop to put AUG-576 in frame with AUG-611, and in addition another in-frame AUG was introduced at nt 593. When most of the IRES was deleted to generate a monocistronic mRNA, the use of these AUGs conformed to the scanning ribosome model: improving the AUG-576 context increased initiation at this site and decreased initiation at downstream sites, whereas the converse was seen when AUG-576 was mutated to GUA; and AUG-593, when present, took complete precedence over AUG-611. Under IRES-dependent conditions, by contrast, much less initiation occurred at AUG-576 than in a monocistronic mRNA with the same AUG-576 context, mutation of AUG-576 decreased initiation at downstream sites by ∼70%, and introduction of AUG-593 did not completely abrogate initiation at AUG-611, unless the apical base pairing in domain VI was destroyed by point mutations. These results indicate that ribosomes first bind at the AUG-576 site, but instead of initiating there, most of them are transferred to AUG-611, the majority by strictly linear scanning and a substantial minority by direct transfer, which is possibly facilitated by the occasional persistence of base pairing in the apical part of the domain VI stem.Until the recent discovery of animal picornaviruses with internal ribosome entry sites (IRESs) resembling that of hepatitis C virus, most picornavirus IRESs have been classified into two groups (1, 17): type 1 (exemplified by entero- and rhinoviruses) and type 2 (cardio- and aphthoviruses). Primary sequences and especially secondary structures are strongly conserved within each group but there is very little similarity between the two groups apart from an AUG triplet at the 3′ end of the IRES (as defined by deletion analysis), which is preceded by a ∼25 nucleotide (nt) pyrimidine-rich tract (17). In type 2 IRESs, notably encephalomyocarditis virus (EMCV), this AUG triplet is the authentic initiation codon for viral polyprotein synthesis, and the totality of the evidence indicates that all ribosomes bind at, or very close to, this AUG and that all initiate translation at this site (18, 19). The foot-and-mouth disease virus (FMDV), although a type 2 IRES, is not quite so straightforward in that a minority of initiation events occur at the AUG immediately downstream of the oligopyrimidine tract, and the rest occur at the next AUG, 84 nt downstream (3, 45).In contrast, initiation on type 1 IRESs seems much more complicated and rather puzzling. The first puzzling feature is that there is very little, if any, initiation at the AUG just downstream of the oligopyrimidine tract, at nt 586 in poliovirus type 1 (PV-1) (39), and the initiation site for polyprotein synthesis is the next AUG further downstream, at a distance of ∼160 nt in enteroviruses and ∼35 nt in rhinoviruses (17). Nevertheless, AUG-586 is important for efficient initiation at the authentic polyprotein initiation site. Mutation of AUG-586 in a PV-1 infectious clone was found to be quasi-infectious (42), while mutation of the equivalent site in PV-2 conferred a small-plaque phenotype and reduced initiation at the polyprotein initiation site by ∼70% in both in vitro assays and in transfection assays (32, 33, 37).This observation has led to the idea that ribosomes first bind at AUG-586, but instead of initiating at this site, virtually all of them get transferred to the polyprotein initiation site (17). This raises questions as to the nature of the transfer process. Because insertion of an AUG codon between PV-1 nt 586 and the authentic initiation site conferred a small-plaque phenotype and because all large-plaque pseudo-revertants had lost the inserted AUG either by deletion or point mutation (25, 26), linear scanning is likely to be important. However, as the insertion resulted in a small-plaque phenotype rather than lethality, there remains the possibility that some ribosomes were transferred directly without scanning the whole distance. This has also been suggested on the grounds that insertion of AUGs or a hairpin loop between nt 586 and the authentic initiation site of PV-1 did not seem to reduce polyprotein synthesis in vitro as much as might be expected if the authentic initiation site is accessed by strictly linear scanning (8).The final puzzle is that AUG-586 is located in a stem-loop structure, domain VI (Fig. (Fig.1A),1A), which is conserved in all entero- and rhinoviruses apart from bovine enterovirus. If the initiating 40S subunits do inspect AUG-586 in some way, albeit an unproductive way, this stem-loop would need to open at least partly, if not completely. This need for domain VI to be opened might be considered an impediment to efficient initiation, and yet its strong conservation suggests the opposite, namely, that it might have a positive effect. Precise deletion of the spacer downstream of AUG-586 in PV-1(Mahoney), so that polyprotein synthesis now started at 586, reduced virus yield by ∼10-fold (39), and in an independent study a deletion that brought the polyprotein initiation site to nt 586 or 580 caused a very similar growth defect in PV-1(Sabin) although the defect was considerably less in a Mahoney background (13, 27). On the other hand, two smaller deletions in PV-1(Sabin) that retained just the whole base-paired domain VI or only its 5′ side, placing the polyprotein initiation site 52 or 31 nt, respectively, downstream of AUG-586, did not confer any significant negative phenotype (13, 27). Taken together, these results would seem to imply that the base pairing in domain VI is neutral to initiation efficiency, but the primary sequence of its 5′ side may confer a moderate positive effect. In this respect it is interesting that bovine enterovirus retains most of the sequence of the 5′ side of domain VI but lacks the complementary sequence of the 3′ side.Open in a separate windowFIG. 1.(A) Sequence and base pairing of IRES domain VI of HRV-2 and PV-1(Mahoney), numbered with respect to the viral genome sequence. (B) Hypothetical model for the opening of HRV-2 domain VI in two stages, showing that in the intermediate state AUG-576 and AUG-611 are both exposed.We have reexamined these issues but in the context of human rhinovirus 2 (HRV-2), mainly because the close proximity of the polyprotein initiation site (at nt 611) to the AUG (at nt 576) just downstream of the oligopyrimidine tract makes the interpretation of results less ambiguous than is the case with enteroviruses. A recent comprehensive sequence comparison of 106 different HRV strains plus 10 field isolates shows that HRV-2 domain VI is typical of the 106 serotypes and the one field isolate that differs in domain VI from its parent strain (35). In 95% of these sequences, the number of residues between the two AUG codons is in the range of 28 to 34 nt (median, 31 nt), with five outliers at 20 or 22 nt. The two AUGs are invariably base paired in a back-to-back configuration (Fig. (Fig.1A),1A), and the intervening residues fold into a base-paired structure, usually with a single mismatch (Fig. (Fig.1A)1A) or at least one G-U codon at around the mid-point and an apical loop of 3 to 6 residues (depending on the strain). The base-paired stem of enteroviruses is considerably shorter (usually without a mismatch), and the extra length in HRV domain VI generally consists of A-U and U-A pairs (often alternating) in the apical part (Fig. (Fig.1A).1A). In 23% of these 107 HRV domain VI sequences, the two AUGs are in the same reading frame, and in 17 (approximately two-thirds) of these there is no in-frame stop codon between them so that any initiation at the upstream AUG would result in synthesis of a VP0 protein (and, hence, also VP4) with an N-terminal extension.We first asked whether AUG-576 in HRV-2 is similar to AUG-586 in PV-1 in that there is very little initiation at this site, and yet AUG-576 is important for efficient initiation at the downstream polyprotein initiation site. We then looked for evidence that the domain VI stem-loop opens and whether all ribosomes access the authentic initiation site (AUG-611) by strictly linear scanning from some upstream site. We conclude that most ribosomes do access AUG-611 in this way, but a significant minority may take a shortcut, which could be facilitated if the apical part of this domain remains closed and base paired, with the single mismatch in the domain VI stem possibly causing the opening of this domain to occur in two stages (Fig. (Fig.1B1B).  相似文献   

6.
A set of Theiler's murine encephalomyelitis virus mutants with engineered alterations in the conserved oligopyrimidine/AUG tandem (E. V. Pilipenko, A. P. Gmyl, S. V. Maslova, G. A. Belov, A. N. Sinyakov, M. Huang, T. D. K. Brown, and V. I. Agol, J. Mol. Biol. 241:398-414, 1994) were assayed for their growth potential in BHK-21 cells (as reflected in plaque size) and for neurovirulence upon intracerebral inoculation of mice. Tandem-destroying mutations, which included substitutions in the oligopyrimidine moiety and extended insertions into the oligopyrimidine/AUG spacer, exerted relatively little effect on the plaque size but ensured a high level of attenuation. The attenuated mutants exhibited remarkable genetic stability upon growth in BHK-21 cells. However, the brains of rare animals that developed symptoms after the inoculation with high doses of these mutants invariably contained pseudorevertants with the oligopyrimidine/AUG tandem restored by diverse deletions or an AUG-generating point mutation. The AUG moiety of the tandem in the revertant genomes was represented by either a cryptic codon or initiator codon. The results demonstrate that the tandem, while dispensable for the Theiler's murine encephalomyelitis virus growth in BHK-21 cells, is essential for neurovirulence in mice. Thus, the oligopyrimidine/AUG tandem is a host-dependent cis-acting control element that may be essential for virus replication under certain conditions. The functional activity of the tandem was retained when its oligopyrimidine or AUG moieties were made double stranded. A possible role of the tandem in the cap-independent internal initiation of translation on the picornavirus RNA templates is discussed.  相似文献   

7.
8.
9.
The 5'-untranslated region (5'-UTR) of retroviral genomes contains elements required for genome packaging during virus assembly. For many retroviruses, the packaging elements reside in non-contiguous segments that span most or all of the 5'-UTR. The Rous sarcoma virus (RSV) is an exception, in that its genome can be packaged efficiently by a relatively short, 82 nt segment of the 5'-UTR called muPsi. The RSV 5'-UTR also contains three translational start codons (AUG-1, AUG-2 and AUG-3) that have been controvertibly implicated in translation initiation and genome packaging, one of which (AUG-3) resides within the muPsi sequence. We demonstrated recently that muPsi is capable of binding to the cognate RSV nucleocapsid protein (NC) with high affinity (dissociation constant K(d) approximately 2 nM), and that residues of AUG-3 are essential for tight binding. We now report the solution structure of the NC:muPsi complex, determined using NMR data obtained for samples containing ((13)C,(15)N)-labeled NC and (2)H-enriched, nucleotide-specifically protonated RNAs. Upon NC binding, muPsi adopts a stable secondary structure that consists of three stem loops (SL-A, SL-B and SL-C) and an 8 bp stem (O3). Binding is mediated by the two zinc knuckle domains of NC. The N-terminal knuckle interacts with a conserved U(217)GCG tetraloop (a member of the UNCG family; N=A,U,G or C), and the C-terminal zinc knuckle binds to residues that flank SL-A, including residues of AUG-3. Mutations of critical nucleotides in these sequences compromise or abolish viral infectivity. Our studies reveal novel structural features important for NC:RNA binding, and support the hypothesis that AUG-3 is conserved for genome packaging rather than translational control.  相似文献   

10.
The Rous sarcoma virus (RSV) leader RNA has three short open reading frames (ORF1 to ORF3) which are conserved in all avian sarcoma-leukosis retroviruses. Effects on virus propagation were determined following three types of alterations in the ORFs: (i) replacement of AUG initiation codons in order to prohibit ORF translation, (ii) alterations of the codon context around the AUG initiation codon to enhance translation of the normally silent ORF3, and (iii) elongation of the ORF coding sequences. Mutagenesis of the AUG codons for ORF1 and ORF2 (AUG1 and AUG2) singly or together delayed the onset of viral replication and cell transformation. In contrast, mutagenesis of AUG3 almost completely suppressed these viral activities. Mutagenesis of ORF3 to enhance its translation inhibited viral propagation. When the mutant ORF3 included an additional frameshift mutation which extended the ORF beyond the initiation site for the gag, gag-pol, and env proteins, host cells were initially transformed but died soon thereafter. Elongation of ORF1 from 7 to 62 codons led to the accumulation of transformation-defective virus with a delayed onset of replication. In contrast, viruses with elongation of ORF1 from 7 to 30 codons, ORF2 from 16 to 48 codons, or ORF3 from 9 to 64 codons, without any alterations in the AUG context, exhibited wild-type phenotypes. These results are consistent with a model that translation of the ORFs is necessary to facilitate virus production.  相似文献   

11.
The efficiency of translation initiation at codons differing at one or two nucleotides from AUG was tested as initiation codons for the phosphinotricin-acetyltransferase gene in T-DNA plant transformation in Arabidopsis thaliana. With the exception of UUA codon that differs from AUG at two nucleotides and does not permit any detectable activity, all the other codons (AUC, GUG, ACG, and CUG) present a phosphinotrycin acetyltransferase activity that varies between 5 and 10% of the AUG activity. This low activity is sufficient to confer glufosinate resistance to some of the plants. These results indicate that, in plants as is the case in animals, non-AUG initiating codons may be used for translation initiation, namely when a low expression rate is needed.  相似文献   

12.
We determined the sites at which ribosomes form initiation complexes on Rous sarcoma virus RNA in order to determine how initiation of Pr76gag synthesis at the fourth AUG codon from the 5' end of Rous sarcoma virus strain SR-A RNA occurs. Ribosomes bind almost exclusively at the 5'-proximal AUG codon when chloride is present as the major anion added to the translational system. However, when chloride is replaced with acetate, ribosomes bind at the two 5'-proximal AUG codons, as well as at the initiation site for Pr76gag. We confirmed that the 5'-proximal AUG codon is part of a functional initiation site by identifying the seven-amino acid peptide encoded there. Our results suggest that (i) translation in vitro of Rous sarcoma virus virion RNA results in the synthesis of at least two polypeptides; (ii) the pattern of ribosome binding observed for Rous sarcoma virus RNA can be accounted for by the modified scanning hypothesis; and (iii) the interaction between 40S ribosomal subunits or 80S ribosomal complexes is stronger at the 5'-proximal AUG codon than at sites farther downstream, including the initiation site for the major viral proteins.  相似文献   

13.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

14.
The quantitative levels of initiation of protein synthesis at codons other than AUG were determined with a CYC7-lacZ fused gene in the yeast Saccharomyces cerevisiae. AUG was the only codon which efficiently initiated translation, although some non-AUG codons allowed initiation at very low efficiency, below 1% of the normal level. Since translation initiates at codons other than AUG in at least two wild-type genes from eucaryotes, other factors presumably play a role in enhancing the activity of non-AUG codons.  相似文献   

15.
Pöyry TA  Jackson RJ 《Journal of virology》2011,85(19):10178-10188
Translation initiation dependent on the foot-and-mouth disease virus (FMDV) internal ribosome entry site (IRES) occurs at two sites (Lab and Lb), 84 nucleotides (nt) apart. In vitro translation of an mRNA comprising the IRES and Lab-Lb intervening segment fused to a chloramphenicol acetyltransferase (CAT) reporter has been used to study the parameters influencing the ratio of the two products and the combined product yield as measures of relative initiation site usage and productive ribosome recruitment, respectively. With wild-type mRNA, ~40% of initiation occurred at the Lab site, which was increased to 90% by optimization of its context, but decreased to 20% by mutations that reduced downstream secondary structure, with no change in recruitment in either case. Inserting 5 nt into the pyrimidine-rich tract located just upstream of the Lab site increased initiation at this site by 75% and ribosome recruitment by 50%. Mutating the Lab site to RCG or RUN codons decreased recruitment by 20 to 30% but stimulated Lb initiation by 20 to 40%. An antisense oligodeoxynucleotide annealing across the Lab site inhibited initiation at both sites. These and related results lead to the following conclusions. Recruitment by the wild-type IRES is limited by its short oligopyrimidine tract. At least 90% of internal ribosome entry occurs at the Lab AUG, but initiation at this site is restricted by its poor context, despite a counteracting effect of downstream secondary structure. Initiation at the Lb site is by ribosomes that access it by linear scanning from the original entry site, and not by an independent entry process.  相似文献   

16.
17.
18.
A full length cDNA copy of dsRNA segment seven of Simian 11 rotavirus has been obtained by standard molecular cloning techniques. Segment seven codes for the non-structural viral protein NCVP4 and is 1104 nucleotides in length with putative 5'- and 3'- terminal non-coding regions of 25 and 134 residues respectively. The longest open reading frame of 315 codons extends from nucleotide 26 to 970 inclusive. However, the presence nearby of two other AUG codons makes it unclear which codon is used for initiation. The second AUG conforms to the Kozak consensus sequence and if utilised, would yield a protein 312 amino acids in length with a nett charge at pH7 of -2.5. Determination of the gene 7 sequence indicates that terminal sequence conservation among rotavirus gene segments is limited to three and two nucleotides at the 5' and 3' ends of the plus strand, respectively.  相似文献   

19.
The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable “Kozak” context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that nonlethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.  相似文献   

20.
Jian-hua Zhou 《Bio Systems》2010,101(1):20-595
The mechanism of utilization of alternative two AUGs in foot-and-mouth disease virus (FMDV) is still unknown to date. In this study, the characteristics of codon usage bias (CUB) of the region between the two AUGs (the region-La) and of the same-sized region behind the second AUG (the region-Lb) in 94 different FMDV RNA sequences were analyzed using relative synonymous codon usage (RSCU) values. The results indicated that many codons with negative CUB were preferentially used in the region-La. There were two conserved residues (Thr and Cys) on the 4th and 6th residue positions of the region-La. The conserved residues had a general tendency to choose synonymous codons with negative CUB. Although most positions in the region-La did not contain conserved residues, many positions tended to use codons with negative CUB in this region. Among these codons, the majority belonged to the amino acids containing synonymous codons with clearly positive and negative CUB, including Asp, Val, Ile, Leu, Thr, Ala, Ser, Asn and Arg. The presence of many codons with negative CUB in the region-La might impair the efficiency of the first AUG selection. The phylogenetic incongruence of the region-La and the region-Lb implied that intertypic recombination played an important role in the evolution of FMDV. Furthermore, due to the existence of more positions with positive CUB and more widespread phylogenetic incongruence in the region-Lb than the region-La, a probable relationship between the degree of CUB and the evolution of the two target regions was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号