首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histochemical and atomic absorption spectrophotometric analysis of trace metal mobilization caused by the action of ethanol in the central nervous system (CNS) and liver of the rat is described. Histochemically it has been shown that in all neurons examined (motoneurons, pyramidal and Purkinje cells) the trace metals (mainly Zn2+ and Cu2+) are mobilized. Most of the stained materials disappear from the perikaryon of the Purkinje cells, while in both the motoneurons and the pyramidal cells the trace metals are displaced from the perikaryon into the axon and axon hillock. At the same time, some of the glia cells display a high metal content. Quantitative determination of the Zn2+ and Cu2+ by means of atomic absorption spectrophotometry reveals that after 2 hours ethanol treatment both the Zn2+ and the Cu2+ levels are decreased in the archicerebellar cortex, while after 4 hours the Zn2+ levels are increased in the cerebrum and the spinal cord. The present observations on the histochemical localization and the contents of zinc and copper in different parts of the CNS and liver reveal the important role of the effect of ethanol on the trace metal mobilization.  相似文献   

2.
Summary Histochemical and atomic absorption spectrophotometric analysis of trace metal mobilization caused by the action of ethanol in the central nervous system (CNS) and liver of the rat is described.Histochemically it has been shown that in all neurons examined (motoneurons, pyramidal and Purkinje cells) the trace metals (mainly Zn2+ and Cu2+) are mobilized. Most of the stained materials disappear from the perikaryon of the Purkinje cells, while in both the motoneurons and the pyramidal cells the trace metals are displaced from the perikaryon into the axon and axon hillock. At the same time, some of the glia cells display a high metal content.Quantitative determination of the Zn2+ and Cu2+ by means of atomic absorption spectrophotometry reveals that after 2 hours ethanol treatment both the Zn2+ and the Cu2+ levels are decreased in the archicerebellar cortex, while after 4 hours the Zn2+ levels are increased in the cerebrum and the spinal cord.The present observations on the histochemical localization and the contents of zinc and copper in different parts of the CNS and liver reveal the important role of the effect of ethanol on the trace metal mobilization.  相似文献   

3.
Growth responses of Avicennia marina seedlings to contamination by different concentrations of two essential (Cu, Zn) and two non-essential (Pb, Hg) trace metals were studied under glasshouse conditions. We tested the hypothesis that soil retention and root ultrafiltration would exclude most of the trace metals, and that those that are absorbed and translocated to the shoots would interfere with plant performance and be excreted via leaf salt glands. One-month-old seedlings were subjected to Cu, Zn, Pb and Hg at concentrations of 0, 40, 80, 120 and 160 μg g−1 sediment for 12 months in a randomized complete block design (n = 6). Photosynthesis was measured at the end of 12 months of trace metal exposure with a portable gas exchange system and chlorophyll fluorescence with a pulse-modulated fluorometer. After morphometric measurements, plants were harvested and analyzed for Cu, Zn, Pb and Hg by atomic absorption spectroscopy. Total dry biomass decreased with increasing trace metal concentration for all metals. In the 160 μg g−1 Cu, Zn, Hg and Pb treatments, total biomass was significantly lower than the control value by 43%, 37%, 42% and 40%, respectively. Decreases in plant height and number of leaves followed trends similar to those for total biomass and ranged from 37% to 60%, compared to the controls. Decreases in chlorophyll content in the trace metal treatments ranged from 50% to 58% compared to the control. Carbon dioxide exchange, quantum yield of photosystem II (PSII), electron transport rate (ETR) through PSII and photosynthetic efficiency of PSII (Fv/Fm) were highest in the control treatment and decreased with increasing trace metal concentrations. Decreases in CO2 exchange in the 160 μg g−1 treatments for all trace metals ranged from 50% to 60%. Concentrations of all trace metals in plant organs increased with increasing metal concentrations and were higher in roots than in shoots, with concentrations of Cu and Zn being considerably higher than those of Hg and Pb. Qualitative elemental analyses and X-ray mapping of crystalline deposits over the glands at the leaf surfaces indicated that Cu and Zn were excreted from the salt glands, while Hg and Pb were absent, at least being below the limits of detection. These results demonstrate that growth processes are sensitive to trace metals and therefore can be considered as a cost of metal tolerance, but salt glands of this mangrove species do contribute eliminating at least part of physiologically essential trace metals if taken up in excess.  相似文献   

4.
Summary By the use of a specific histochemical staining method evidence was obtained that tolerance to heavy metals in ectomycorrizal fungi is based on the presence of metallothionein-like proteins. The implication that tolerance in these fungi should be induced by sublethal concentrations of heavy metals has been confirmed by us. Induction of metallothionein in ectomycorrizal fungi could possibly be helpful in protection of their host plants in areas polluted by heavy metals. In comparison with biochemical methods the histochemical method is able to locate the metal tolerance and has the added advantage that it may also be applied to mycorrhizas (root and fungus).  相似文献   

5.
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.  相似文献   

6.
It is known that both natural and artificial electric fields (EF) affect plants physiological parameters as well as germination, growth and yield. The present article describes results of a preliminary experiment on the impact of electric field on aquatic plants biogeochemistry. The objective of the present study was the assessment of the influence exerted by the electric field on growth and trace metals content of Elodea canadensis. In a laboratory experiment plants were exposed to the field intensity of 54?kV m?1 for 7?days. The plants length was measured and the content of Fe, Mn, Ni, Pb, and Zn was determined using atomic absorption spectrometry (AAS). Results showed that the application of electric field slightly enhanced the growth of E. canadensis shoots. The content of Mn and Ni was significantly lower, and Pb and Zn significantly higher in plants exposed to the electric filed, while Fe content did not differ between control and EF treatment. This provides a rationale for further studies on biological effects of electric field in trace metal contaminated waters and application of an electrically enhanced phytoremediation.  相似文献   

7.
Although biochemical and behavioural studies have shown right-left differences in several areas of the rat limbic system, some anatomical studies reported no significant right-left differences in several morphological parameters of the hippocampus. The purpose of the present study was to determine whether there are asymmetries in the micro-anatomy of the rat hippocampus by examining the intensity of Timm staining in various hippocampal fields and the area occupied by mossy fibres by the use of combined microdensitometric and quantitative image analysis techniques. Timm staining demonstrates the distribution of intrahippocampal association pathways because it is a histochemical marker of zinc and other heavy transition metals. There were no right-left differences in the density of Timm staining at the level of the dentate gyrus, in the dendritic layer of CA1 and CA2 fields, in the mossy fibre area or in the subiculum. These findings provide further evidence of a lack of morphological asymmetry in the rat hippocampus.  相似文献   

8.
The concentrations of Cd, Cu, Pb, and Zn were determined in the abiotic and biotic components at two sites in the Fox River, Illinois. Analysis of the metals was completed on solutions of wet ashed or dry ashed samples with a single beam atomic absorption spectrophotometer. Despite different inputs of the trace metals there were no significant differences in the concentration of Cu or Zn in the biota between the two sites. This was postulated to be due to physiological control of these metals. However, Cd and Pb concentrations were higher in the biota and substrate at the high input site. No accumulation of Cd or Pb occurred at higher trophic levels. Cu and Zn concentrations were similar for all biota with the exception of crayfish and snails which had higher Cu and Zn concentrations, respectively.  相似文献   

9.
Summary A modified sulfide-silver method was used to demonstrate tissue bound heavy metals in the rat brain at various ages. An accumulation of sulfide-silver positive material was found to accompany aging, indicating heavy metal accumulation. This was verified by quantitative analysis using atomic absorption spectrophotometry. Iron appears to be the most important heavy metal. Besides differences between various ages, regional variations in heavy metal contents could constantly be shown. The heavy metals appear, at least in part, to be located in lysosomes. A heavy metal influence on the lysosomal membrane permeability is discussed.Supported by the Swedish Medical Research Council grant No. 12X-2037.  相似文献   

10.
The divalent metal requirement of intrinsic phosphatase activity was investigated using native and trypsinized calcineurin. This was assessed by examining (1) the stimulation of the enzyme by various metals, (2) the inhibition of the enzyme activity by metal chelators (EDTA and EGTA), and (3) the restoration by various metals of the activity of the EDTA-inhibited calcineurin phosphatase. The results supported the view that a tightly bound trace metal is necessary for expression of the phosphatase activity of calcineurin and implicate Mn2+ as the tightly bound metal.  相似文献   

11.
Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B12 and carbon dioxide partial pressure (pCO2) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B12-replete conditions, cells grown at high pCO2 had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO2. At high pCO2, B12-limited cells had ∼50% lower specific growth and carbon fixation rates, and used Fe ∼15-fold less efficiently, and Zn and Cd ∼3-fold less efficiently, in comparison with B12-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO2/B12-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B12-replete cells were ∼5- to 14-fold higher in comparison with B12-limited cells, suggesting that >80% of cellular Co of B12-limited cells was likely from B12. Our results demonstrate that CO2 and vitamin B12 interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.  相似文献   

12.
Organic solvents, detergents, organochloric compounds, pesticides, mycotoxins, residues of veterinary drugs and metals are examples for food contaminants; they are usually present at very low concentrations. Their impact on absorption and distribution kinetics of essential trace metals, if there is any, can be mediated by three types of mechanisms: 1. In animal experiments, contaminants like T-2 mycotoxins or 2,3,7,8 tetrachlorodibenzodioxin inhibited absorptive or excretory mechanisms at high concentrations which, however, are usually not found in food. 2. Food contaminants with metal binding properties can interact with essential metals in the intestinal lumen or during transfer through the intestinal mucosa and affect their absorption according to the rules of complex chemistry. To balance the effect of endogenous metal-binding food constituents, they should be present in comparably high quantities. Usually, however, the concentration of contaminants is approx. 6 orders of magnitude lower than that of endogenous food ligands. 3. Contaminating metals may interfere with the regulated absorption, distribution, and excretion kinetics of essential metals. Such mechanisms may be amplified by vicious cycles. In general, however, food contaminations with metals are too low to have an impact on the bioavailability of essential metals.  相似文献   

13.
Rates of uptake from solution and assimilation efficiencies of the trace metals Ag, Cd and Zn were investigated in the barnacle Balanus amphitrite after exposure in the laboratory for 19 days to low and high doses of added Ag and Cd in a diatom (Thalassiosira weissflogii) diet, the major route of metal uptake in barnacles. The hypothesis under test was that acute metal pre-exposure would affect the assimilation efficiency (AE) of that and other metals and their rate of uptake from solution. It was found that pre-exposure of the barnacles to atypically high dietary challenges of Cd and Ag did not cause changes in the rates of uptake of Cd, Ag or Zn from solution. Similarly, there was no clear consistent effect of dietary pre-exposure to Cd or Ag on the assimilation efficiency of Cd, Ag or Zn. The efflux rates of the metals were also comparable following the acute dietary exposure. Subcellular fractionation data indicated that the majority of the three metals were partitioned in the insoluble fraction, with very little in the soluble fraction consisting of metallothionein-like proteins and other (heat-sensitive) proteins. The lack of induction of increased Cd or Ag AE after pre-exposure in barnacles contrasts with results for mussels; this inconsistency is interpreted to result from differences in physiological accumulation patterns, the barnacles relying to an extreme extent on insoluble detoxification.  相似文献   

14.
Violets of the sections Melanium were examined for their colonization by arbuscular mycorrhizal fungi (AMF). Heartsease (Viola tricolor) from several heavy metal soils was AMF-positive at many sites but not at extreme biomes. The zinc violets Viola lutea ssp. westfalica (blue zinc violet) and ssp. calaminaria (yellow zinc violet) were always AMF-positive on heavy metal soils as their natural habitats. As shown for the blue form, zinc violets germinate independently of AMF and can be grown in non-polluted garden soils. Thus the zinc violets are obligatorily neither mycotrophs nor metalophytes. The alpine V. lutea, likely ancestor of the zinc violets, was at best poorly colonized by AMF. As determined by atomic absorption spectrometry, the contents of Zn and Pb were lower in AMF colonized plants than in the heavy metal soils from where the samples had been taken. AMF might prevent the uptake of toxic levels of heavy metals into the plant organs. Dithizone staining indicated a differential deposition of heavy metals in tissues of heartsease. Leaf hairs were particularly rich in heavy metals, indicating that part of the excess of heavy metals is sequestered into these cells.  相似文献   

15.
Plants take up a wide range of trace metals/metalloids(hereinafter referred to as trace metals)from the soil,some of which are essential but become toxic at high concentrations(e.g.,Cu,Zn,Ni,Co),while others are non-essential and toxic even at relatively low concentrations(e.g.,As,Cd,Cr,Pb,and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities.Trace metal contamination can cause toxicity and growth inhibition in plants,as well as accum...  相似文献   

16.
Uptake of trace metals by sediments and suspended particulates: a review   总被引:10,自引:3,他引:7  
Hart  Barry T. 《Hydrobiologia》1982,91(1):299-313
This review addresses three of the possible mechanisms by which trace metals can be concentrated by sediments and suspended particulate matter. These are physico-chemical adsorption from the water column, biological uptake particularly by bacteria and algae, and the sedimentation and physical entrapment of enriched particulate matter. The relative importance of these three mechanisms will be different, depending upon the aqueous system, but there have been insufficient studies to allow the establishment of even rule-of-thumb guidelines, as yet, about their quantitative importance under different conditions.The importance of natural organic matter in the cycling of trace metals in aquatic systems has been stressed. This organic matter may complex with the trace metals and keep them in solution, or it may enhance the association of the trace metals with particulate matter by becoming adsorbed to the particulate surface and then complexing with the trace metals in the solution phase. Enhanced metal-particulate associations may also arise if the metal-organic complexes are able to adsorb to the surface.The behaviour of natural organic matter may be the single most important influence on trace metal cycling in aquatic systems and should receive considerably more attention in the future.  相似文献   

17.
A teflon chemostat constructed for studies of microbial trace metal metabolism is described. The utility of this continuous culture system was demonstrated with Streptococcus mutans, in which iron and manganese stimulated growth in ranges of 0.18 to 0.45 and 18 to 54 microM, respectively. This device should facilitate studies of the effect of trace metals on a variety of physiological functions.  相似文献   

18.
The amounts of zinc, copper, and lead in the rat spinal cord were determined by means of flameless atomic absorption spectrophotometry. Zinc was present in a concentration about 100 p.p.m. (dry weight), copper in a concentration about 5 p.p.m., and lead in slightly more than 1 p.p.m. Analysis of various levels along the cranio-caudal axis of the rat spinal cord revealed differences in the heavy metal content. The Timm sulfide silver staining method has demonstrated that metals in the spinal cord have a distinct regional distribution. To obtain a differentiation between the stainable metals, the effects of six chelating agents (DEDTC, dithizone, oxine, EDTA, dipyridyl, and phenantroline) on the Timm pattern were tested. EDTA left the pattern unchanged, while the other compounds showed individual differences in their influence on the Timm pattern, suggesting that the heavy metal pattern of the spinal cord consists of multiple compartments. The effect of intravital multiple low dose treatment with three of the chelating agents on the histochemical pattern and the metal content of the spinal cord was also investigated. It was found that a decrease in the metal content was not followed by reduction of stainability and vice versa.  相似文献   

19.
Summary The amounts of zinc, copper, and lead in the rat spinal cord were determined by means of flameless atomic absorption spectrophotometry. Zinc was present in a concentration about 100 p.p.m. (dry weight), copper in a concentration about 5 p.p.m., and lead in slightly more than 1 p.p.m. Analysis of various levels along the cranio-caudal axis of the rat spinal cord revealed differences in the heavy metal content.The Timm sulfide silver staining method has demonstrated that metals in the spinal cord have a distinct regional distribution. To obtain a differentiation between the stainable metals, the effects of six chelating agents (DEDTC, dithizone, oxine, EDTA, dipyridyl, and phenantroline) on the Timm pattern were tested. EDTA left the pattern unchanged, while the other compounds showed individual differences in their influence on the Timm pattern, suggesting that the heavy metal pattern of the spinal cord consists of multiple compartments.The effect of intravital multiple low dose treatment with three of the chelating agents on the histochemical pattern and the metal content of the spinal cord was also investigated. It was found that a decrease in the metal content was not followed by reduction of stainability and vice versa.  相似文献   

20.
超富集植物吸收富集重金属的生理和分子生物学机制   总被引:31,自引:2,他引:31  
与普通植物相比,超富集植物在地上部富集大量重金属离子的情况下可以正常生长,其富集重金属的机理已经成为当前植物逆境生理研究的热点领域.尤其是近两年,随着分子生物学等现代技术手段的引人,关于重金属离子富集机理的研究取得了一定进展.通过与酵母突变株功能互补克隆到了多条编码微量元素转运蛋白的全长cDNA;也从分子水平上研究了谷胱甘肽、植物螯合素、金属硫蛋白、有机酸或氨基酸等含巯基物质与重金属富集之间的可能关系.本文从植物生理和分子生物学角度简要评述超富集植物对重金属元素的吸收、富集、整合及区室化的机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号