首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAAG, an agonist at Group II metabotropic glutamate receptors and at the N‐methyl‐d ‐aspartate (NMDA)‐type of ionotropic glutamate receptor, was infused at 250 nmoles in 0.25 μL of saline into each cerebral ventricle of 12‐day‐old rat pups. Proportion of pycnotic neurons was determined in 100 × 200 μm areas of medial and lateral blades of DG, and in areas CA1, CA3a, b of both dorsal and ventral hippocampus. In some sections we used Fluoro‐JADE‐B staining to visualize degenerating neuronal cell bodies. There was a marked neurodegeneration, particularly in the medial blade of DG, at 24 h after the administration of NAAG but it was lower at the 4‐day time point. No significant damage was observed in 50‐day‐old rat. The results indicate that early postnatal administration of NAAG can cause serious loss of neurons in rat hippocampus. Acknowledgement: Supported by LNOOB122 MEYS CR.  相似文献   

2.
N-acetyl-L-aspartyl-L-glutamate (NAAG) is a dipeptide that could be considered a sequestered form of L-glutamate. As much as 25% of L-glutamate in brain may be present in the form of NAAG. NAAG is also one of the most abundant neuroactive small molecules in the CNS: it is an agonist at Group II metabotropic glutamate receptors (mGluR II) and, at higher concentrations, at the N-methyl-D-aspartate (NMDA) type of ionotropic glutamate receptors. As such, NAAG can be either neuroprotective or neurotoxic and, in fact, both characteristics have been discussed and described in the literature. In the present studies, 250 nmol NAAG was infused into each lateral cerebral ventricle of 12-day-old rat pups and, using Nissl-stained sections, neurodegeneration in the hippocampus was evaluated 24 or 96 h after the infusion. In several experiments, the neuronal death was also visualised by Fluoro-Jade B staining and studied by TUNEL technique. Some of the NAAG-treated animals were allowed to survive until 50 days post partum and subjected to behavioural (open field) tests. The administration of NAAG to 12-day-old rats resulted in extensive death of neurons particularly in the dentate gyrus of the hippocampus. The neurodegeneration was, in part, prevented by administration of an NMDA receptor antagonist MK-801 (0.1 mg/kg). The nuclear DNA-fragmentation demonstrated by TUNEL technique pointed to the presence of non-specific single-strand DNA cleavage. The NAAG-associated neonatal neuronal damage may have perturbed development of synaptic circuitry during adolescence as indicated by an altered performance of the experimental animals in the open field testing (changes in grooming activity) at postnatal day 50. The results underscore the potential neurotoxicity of NAAG in neonatal rat brain and implicate neonatally induced, NMDA receptor-mediated neuronal loss in the development of abnormal behaviour in young adult rats.  相似文献   

3.
Hippocampus mossy fibre terminals activate CA3 pyramidal neurons via two distinct mechanisms, both quantal and glutamatergic: (i) rapid excitatory transmission in response to afferent action potentials and (ii) delayed and prolonged release following nicotinic receptor activation. These processes were analysed here using rat hippocampus mossy fibres synaptosomes. The relationships between synaptosome depolarisation and glutamate release were established in response to high-KCl and gramicidin challenges. Half-maximal release corresponded to a 52 mV depolarisation step. KCl-induced release was accompanied by transient dissipation of the proton gradient across synaptic vesicle membrane. Nicotine elicited a substantial glutamate release from mossy fibre synaptosomes (EC50 3.14 μM; V max 12.01 ± 2.1 nmol glutamate/mg protein; Hill's coefficient 0.99). However, nicotine-induced glutamate release was not accompanied by any change in the membrane potential or in the vesicular proton gradient. The effects of acetylcholine (200 μM) were similar to those of nicotine (25 μM). Nicotinic α7 receptors were evidenced by immuno-cytochemistry on the mossy fibre synaptosome plasma membrane. Therefore, the same terminals can release glutamate in response to two distinct stimuli: (i) rapid neurotransmission involving depolarisation-induced activation of voltage-gated Ca2+ channels and (ii) a slower nicotinic activation which does not involve depolarisation or dissipation of the vesicular proton gradient.  相似文献   

4.
Abstract: Quantitative autoradiography of [3H]MK-801 binding was used to characterize regional differences in N -methyl- d -aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [3H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [3H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 μ M . In the presence of added glutamate (3 μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [3H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [3H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 μ M . In the presence of added glycine (1 μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [3H]MK-801 binding.  相似文献   

5.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide found in high concentrations in the brain. Using whole-cell recordings of CA1 pyramidal neurons in acute hippocampal slices, we found that either (i) the application of exogenous NAAG or (ii) an increase of endogenous extracellular NAAG, caused by the inhibition of its catabolic enzyme glutamate carboxypeptidase II (GCP II), resulted in a significant reduction in the amplitude of the isolated NMDA receptor (NMDAR) component of the evoked excitatory postsynaptic current (EPSC). Conversely, reduction of endogenous extracellular NAAG caused by either (i) perfusion with a soluble form of pure human GCP II or (ii) affinity purified antibodies against NAAG, enhanced the amplitude of the isolated NMDAR current. Bath application of GCP II inhibitor induced a progressive loss of spontaneous NMDAR miniatures. Furthermore, NAAG blocked the induction of long-term potentiation at Schaffer collateral axons-CA1 pyramidal neuron synapses. All together, these results suggest that NAAG acts as an endogenous modulator of NMDARs in the CA1 area of the hippocampus.  相似文献   

6.
It is well known that neurons in the CA3 and dentate gyrus (DG) subfields of the hippocampus are resistant to short period of ischemia which is usually lethal to pyramidal neurons in hippocampal CA1 subfield. The present study was undertaken to clarify whether the inherent higher resistance of neurons in CA3 and DG to ischemia is associated with glial glutamate transporter-1 (GLT-1) in rats. Western blot analysis and immunohistochemistry assay showed that the basal expressions of GLT-1 in both CA3 and DG were much higher than that in CA1 subfield. Mild global brain ischemia for 8 min induced delayed death of almost all CA1 pyramidal neurons and marked GLT-1 down-regulation in the CA1 subfield, but it was not lethal to the neurons in either CA3 or DG and induced GLT-1 up-regulation and astrocyte activation showed normal soma and aplenty slender processes in the both areas. When the global brain ischemia was prolonged to 25 min, neuronal death was clearly observed in CA3 and DG accompanied with down-regulation of GLT-1 expression and abnormal astrocytes represented with hypertrophic somas, but shortened processes. After down-regulating of GLT-1 expression and function by its antisense oligodeoxynucleotides or inhibiting GLT-1 function by dihydrokainate, an inhibitor of GLT-1, the mild global brain ischemia for 8 min, which usually was not lethal to CA3 and DG neurons, induced the neuronal death in CA3 and DG subfields. Taken together, the higher expression of GLT-1 in the CA3 and DG contributes to their inherent resistance to ischemia.  相似文献   

7.
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 μM strychnine, a specific glycine receptor antagonist, but was not affected by 30 μM picrotoxin. In addition, Zn2+ (10 μM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 μM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.  相似文献   

8.
It is well known that in certain disease states, including ischemia and Alzheimer's disease, neurodegeneration occurs in the hippocampus and that vulnerability to neuronal death is area dependent. The present study investigated the mechanism of area-dependent vulnerability to neuronal death under endoplasmic reticulum stress conditions induced by tunicamycin (TM), using rat organotypic hippocampal cultures (OHC) and hippocampal slices. Analysis of propidium iodide uptake showed that TM-induced neuronal death in a concentration-dependent manner (20-80 microg/mL) and that the rank order of vulnerability among hippocampal subregions was dentate gyrus (DG)>CA1>CA3. Results of immunohistochemistry using hippocampal slices also showed that procaspase-12-positive cells in area CA3 were significantly fewer than those in area CA1 and the DG. Moreover, procurement of neurons in areas CA1, CA3 and the DG by laser microdissection, followed by Western blot analysis, also revealed that the level of procaspase-12 in area CA3 was significantly lower than those in area CA1 and the DG. Pretreatment with z-ATAD-fmk, a cell-permeable caspase-12-selective inhibitor significantly attenuated the TM-induced increase of PI fluorescence in the CA1 and DG subregion but not in area CA3. These results suggest that TM elicits subregion-specific neuronal toxicity in OHC and that the vulnerability to TM-induced toxicity is at least partly dependent on the expression level of endogenous procaspase-12 in each area of the hippocampus.  相似文献   

9.
Using histochemical analysis (NADPH-diaphorase) we have been investigating the influence of intraperitoneal administration of kainic acid (KA), hypoxia and combination of both these factors on neurons of the hippocampus and on the primary auditory cortex (PAC) in male rats of the Wistar strain. Kainic acid was administered to 18-day-old animals, which were exposed to long-lasting repeated hypoxia from the 2nd till the 17th day of age in a hypobaric chamber (for 8 h a day). At the age of 22 or 90 days, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostate sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in the hippocampus, in the dentate gyrus and in the PAC. In 22-day-old animals both hypoxia and KA increased the number of NADPH-diaphorase positive neurons in the hilus, CA1, CA3 areas of the hippocampus and in the PAC. On the contrary, KA given to hypoxic animals lowered the number of NADPH-diaphorase positive neurons in the dentate gyrus. In 90-day-old animals, hypoxia and KA given to both normoxic and hypoxic animals lowered the number of NADPH-diaphorase positive neurons in some areas of the central nervous system.  相似文献   

10.
Abstract: The neuronal dipeptide N -acetylaspartylglutamate (NAAG) fulfills several of the criteria for classification as a neurotransmitter including localization in synaptic vesicles, calcium-dependent release after neuronal depolarization, and low potency activation of N -methyl- d -aspartate receptors. In the present study, the influence of NAAG on metabotropic receptor activation in cerebellar granule cells was examined in cell culture. Stimulation of granule cell adenylate cyclase with forskolin increased cyclic AMP (cAMP) several hundredfold above basal levels within 10 min in a concentration-dependent manner. Although gluta-mate, NAAG, and the metabotropic receptor agonist frans-1-amino-1, 3-cyclopentanedicarboxylic acid did not alter the low basal cAMP levels, the application of 300 μ M glutamate or NAAG or trans-1-amino-1, 3-cyclopentanedicarboxylic acid reduced forskolin-stimulated cAMP in granule cells by 30–50% in the absence or presence of inhibitors of ionotropic acidic amino acid receptors, as well as 2-amino-4-phosphonobutyrate. No additivity in the inhibition of cAMP was found when 300 μ M NAAG and trans -1-amino-1, 3-cyclopentanedicarboxylic acid were coapplied. The β-analogue of NAAG failed to reduce cAMP levels. Similar effects of NAAG and glutamate were obtained under conditions of inhibition of phosphodiesterase activity and were prevented by pretreatment of the cells with pertussis toxin. These data are consistent with the activation by NAAG of a metabotropic acidic amino acid receptor coupled to an inhibitory G protein. In contrast, the metabotropic acidic amino acid receptor coupled to phosphoinositol turnover in these cells was not activated by NAAG. Granule cells in culture expressed very low levels of extracellular peptidase activity against NAAG, converting to glutamate <0.1% of the 10 μ M through 1 m M NAAG applied to these cells during 15-min in vitro assays.  相似文献   

11.
In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 μg/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with β-tubulin III. However, 21-day treatment (50 μg/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo . The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo .  相似文献   

12.
The "glutamate" theory of schizophrenia emerged from the observation that phencyclidine (PCP), an open channel antagonist of the NMDA subtype of glutamate receptor, induces schizophrenia-like behaviors in humans. PCP also induces a complex set of behaviors in animal models of this disorder. PCP also increases glutamate and dopamine release in the medial prefrontal cortex and nucleus accumbens, brain regions associated with expression of psychosis. Increased motor activation is among the PCP-induced behaviors that have been widely validated as models for the characterization of new antipsychotic drugs. The peptide transmitter N-acetylaspartylglutamate (NAAG) activates a group II metabotropic receptor, mGluR3. Polymorphisms in this receptor have been associated with schizophrenia. Inhibitors of glutamate carboxypeptidase II, an enzyme that inactivates NAAG following synaptic release, reduce several behaviors induced by PCP in animal models. This research tested the hypothesis that two structurally distinct NAAG peptidase inhibitors, ZJ43 and 2-(phosphonomethyl)pentane-1,5-dioic acid, would elevate levels of synaptically released NAAG and reduce PCP-induced increases in glutamate and dopamine levels in the medial prefrontal cortex and nucleus accumbens. NAAG-like immunoreactivity was found in neurons and presumptive synaptic endings in both regions. These peptidase inhibitors reduced the motor activation effects of PCP while elevating extracellular NAAG levels. They also blocked PCP-induced increases in glutamate but not dopamine or its metabolites. The mGluR2/3 antagonist LY341495 blocked these behavioral and neurochemical effects of the peptidase inhibitors. The data reported here provide a foundation for assessment of the neurochemical mechanism through which NAAG achieves its antipsychotic-like behavioral effects and support the conclusion NAAG peptidase inhibitors warrant further study as a novel antipsychotic therapy aimed at mGluR3.  相似文献   

13.
Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left–right and male–female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left–right asymmetry in the hippocampus.  相似文献   

14.
Abstract: An isocratic HPLC method to measure endogenous N -acetyl-aspartyl-glutamate (NAAG) and N -acetyl-aspartate (NAA) is described. After removal of primary amines by passage of tissue extracts over AG-50 resin, the eluate was subject to HPLC anion-exchange analysis and eluted with phosphate buffer with absorbance monitored at 214 nm. The retention time for NAA was 5.6 min and for NAAG 11.4 min with a limit sensitivity of 0.1 nmol. The levels of NAA and NAAG were measured in 16 regions of rat brain and in heart and liver. NAAG was undetectable in heart and liver and exhibited 10-fold variation in concentration among brain regions; the highest levels were found in spinal cord. In contrast, low concentrations of NAA were detectable in heart and liver, and the regional distribution of NAA in brain varied only twofold. The regional distribution of NAA and NAAG correlated poorly. To assess the neuronal localization of these two compounds, the effects of selective brain lesions on their levels were examined. Decortication caused a 28% decrease in NAAG levels in the ipsi-lateral striatum while NAA decreased 38%. Kainate lesion of the striatum resulted in a 31% decrease in NAAG in the ipsilateral striatum, whereas NAA fell by 58%. Kainate lesion of the hippocampus resulted in significant decrements in NAAG and NAA in the hippocampus and septum. Transection of the spinal cord at midthorax resulted in a 51% decrease in NAAG levels immediately caudal and a 40% decrease immediately rostral to the lesion; however, NAA decreased only 30% in these areas. These results are consistent with a neuronal localization of NAAG in brain. Combined with the fact that NAAG interacts with a subpopulation of glutamate receptors, these results suggest that NAAG may serve as an excitatory neurotransmitter.  相似文献   

15.
Abstract: N -Acetylsuccinimidylglutamate [(asu)NAAG], a cyclic form of the peptide N -acetylaspartylglutamate (NAAG) in which the aspartyl residue is linked to glutamate via the α- and β-carboxylates, was identified and quantified by HPLC in the murine and bovine CNS. In the rat, the highest concentrations of (asu)NAAG were detected in the spinal cord (1.83 ± 0.15 pmol/mg of wet tissue weight) and brainstem (1.16 ± 0.08 pmol/mg wet weight), whereas the levels were below the limit of detection in cerebellum, hippocampus, and cerebral cortex. (Asu)NAAG was also detected in significant amounts in the superior colliculus and lateral genicutale nucleus (1.17 ± 0.05 and 0.82 ± 0.13 pmol/mg wet weight, respectively). Although the tissue content of (asu)NAAG was about three orders of magnitude lower than that of NAAG, levels of both peptides were positively correlated among different CNS regions ( r = 0.74, p < 0.003). In the rat spinal cord, (asu)NAAG levels progressively increased from week 2 to month 12 after birth. In bovine spinal cord, the contents of (asu)NAAG and NAAG were comparable in gray and white matter as well as in the dorsal and ventral horns. These results suggest that NAAG and (asu)-NAAG are closely related metabolically and raise the question of the physiological significance of such a cyclic peptide.  相似文献   

16.
Using histochemical analysis (NADPH-diaphorase) we have investigated the influence of intraperitoneal administration of kainic acid (KA), hypoxia and combination of both these factors on neurons of the hippocampus and on the primary auditory cortex (PAC) in male rats of the Wistar strain. Kainic acid was administered to 18-day-old animals, which were exposed to long-lasting repeated hypoxia from the 2nd till the 17th day of age in a hypobaric chamber (for 8 hours a day). At the age of 1 year, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostate sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in CA1 and CA3 areas of the hippocampus, in the dentate gyrus and in the PAC. Both, hypoxia and KA lowered the number of NADPH-diaphorase positive neurons in the hilus, dorsal and ventral blades of the dentate gyrus, CA1 and CA3 areas of the hippocampus. On the contrary, KA given to the hypoxic animals increased the number of NADPH-diaphorase positive neurons in the dorsal blade of the dentate gyrus and PAC.  相似文献   

17.
Using histochemical analysis (NADPH-diaphorase, Fluoro-Jade B dye and bis-benzimide 33,342 Hoechst) we studied the influence of intraperitoneal administration of nicotine (NIC), kainic acid (KA) and combination of both these substances on hippocampal neurons and their changes. In experiments, 35-day-old male rats of the Wistar strain were used. Animals were pretreated with 1 mg/kg of nicotine 30 min prior to the kainic acid application (10 mg/kg). After two days, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostat sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in the CA1 and CA3 areas of the hippocampus, in the dorsal and ventral blades of the dentate gyrus and in the hilus of the dentate gyrus. Fluoro-Jade B positive cells were examined in the same areas in order to elucidate a possible neurodegeneration. In animals exposed only to nicotine the number of NADPH-diaphorase positive neurons in the CA3 area of the hippocampus and in the hilus of the dentate gyrus was higher than in controls. In contrast, KA administration lowered the number of NADPH-diaphorase positive cells in all studied hippocampal areas and in both blades of the dentate gyrus. Massive cell degeneration was observed in CA1 and CA3 areas of the hippocampus and in the hilus of the dentate gyrus after kainic acid administration. Animals exposed to kainic acid and pretreated with nicotine exhibited degeneration to a lesser extent and the number of NADPH-diaphorase positive cells was higher compared to rats, which were exposed to kainic acid only.  相似文献   

18.
Hypoxia is a major cause of ischaemia-induced neuronal damage. In the present study, we examined the effects of in vivo hypoxia on N-methyl-D-aspartate receptors (NMDAR) in the rat hippocampus. This model of in vivo hypoxia involved placing rats in a hypoxic chamber containing 5% O2 and 95% N2 for 30 min. In the hippocampus, neuronal cells in the CA3, the hilus of the dentate gyrus and the dentate gyrus (DG) were damaged. In the CA1, which is known to be vulnerable to ischaemic damage, neuronal cells did not show hypoxia-induced damage. In vivo hypoxia-induced damage caused morphological changes in neuronal cells, such as shrunken, spindle or triangular shapes accompanied by pyknotic nuclei, but did not induce the loss of neuronal cells. On the other hand, the number of binding sites for [3H]-1-[1-(2-thienyl)cyclohexyl]-3,4-piperidine hydrochloride (TCP) gradually decreased on and after 7 days, and then maximally decreased by 25% at 21 days after hypoxia. The number of NMDAR1-immunopositive cells was decreased by 22% in the DG, but was unchanged in the CA3. Furthermore, we examined the effect of a non-competitive NMDA antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]cyclohepten-5,10-imine hydrogen maleate (MK–801), on against in vivo hypoxia. The administration of MK–801 (3 mg/kg, i.p.), 30 min before hypoxia treatment, partly protected against neuronal damage in the DG, but not in the CA3. These results suggest that hypoxia-induced neuronal damage in the DG involves, in part, the activation of NMDAR.  相似文献   

19.
Abstract: N -Acetylaspartylglutamate (NAAG) is the most abundant neuropeptide in the mammalian nervous system. Considerable data support the hypothesis that NAAG is synaptically released in a manner consistent with neurotransmission. Primary murine brain cultures containing neurons and glia expressed 1.2-3.5 nmol of NAAG/mg of protein. In contrast to conclusions drawn from immunohistochemistry, pure glial cultures also expressed high levels of NAAG (0.6-2.11 nmol/mg of protein). These data suggest that although a subpopulation of neurons contains very high NAAG levels, micromolar concentrations of the peptide also are present in glia. Both culture types demonstrated robust extracellular peptidase activity when incubated with NAAG, as well as peptide transport. Uptake of [3H]NAAG was both temperature and sodium dependent, yet relatively insensitive to the presence of extracellular glutamate. These results indicate that synaptically released NAAG, as well as that which may be released from glia, is removed from the extracellular space by direct uptake as well as the robust enzymatic degradation of the peptide. A kinetic analysis of this NAAG transport (estimated K m= 1.8 μ M ) suggests a high-affinity NAAG transport system. The balance of the two processes of direct peptide uptake and peptide hydrolysis would markedly influence the sequence of receptor-mediated events that follow NAAG release.  相似文献   

20.
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号