首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel translocation t(9;21)(q13;q22) associated with trisomy 4 has been detected in a patient with acute myelomonocytic leukemia (AML,M4) in relapse. The chromosomal translocation results in rearrangement of the RUNX1 gene at 21q22. The DNA sequence rearranged on chromosome 9 remains unidentified. The diversity of the partners involved in translocations implicating RUNX1 suggests that the functional consequences of the abnormality are more due to the truncation of RUNX1 than to the identity of its partner in the rearrangement.  相似文献   

2.
Hematopoietic neoplasias are characterized by recurrent chromosomal aberrations that result in the formation of gene fusions and the subsequent expression of chimeric proteins with unique properties. However, in recent years, different lymphoma/leukemia-associated rearrangements, such as BCR/ABL, IGH/BCL2, ETV6/RUNX1 and MLL duplications, have been detected in healthy individuals. The presence of these rearrangements indicates that such translocations can be generated in normal hematopoietic cells without apparent oncogenic consequences. This article reviews and discusses the data available in the literature.  相似文献   

3.
Chronic myeloid leukemia (CML) is characterized by the reciprocal translocation t(9;22)(q34;q11.2) which fuses the ABL1 oncogene on chromosome 9 with the BCR gene on chromosome 22. It is the BCR/ABL protein that drives the neoplasm and the ABL/BCR is not necessary for the disease. In the majority of CML cases, the BCR/ABL fusion gene is cytogenetically recognizable as a small derivative chromosome 22(der 22), which is known as the Philadelphia (Ph) chromosome. However, approximately 2-10% of patients with CML involve cryptic or complex variant translocations with deletions on the der(9) and/or der(22) occuring in roughly 10-15% of CML cases. Fluorescence in situ hybridization (FISH) analysis can help identify deletions and complex or cryptic rearrangements. Various BCR/ABL FISH probes are available, which include dual color single fusion, dual color extra signal (ES), dual color dual fusion and tri color dual fusion probes. To test the utility of these probes, six patients diagnosed with CML carrying different complex variant Ph translocations were studied by G-banding and FISH analysis using the BCR/ABL ES, BCR/ABL dual color dual fusion, and BCR/ABL tricolor probes. There are differences among the probes in their ability to detect variant rearrangements, with or without accompanying chromoso me 9 and/or 22 deletions, and low level disease.  相似文献   

4.
Cancer cells become unstable and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the genomic instability. Several factors influence the formation of chromosomal rearrangements and consequently of fusion genes and their role in tumorigenesis. Studies over the past decades have revealed that recurring chromosome rearrangements leading to fusion genes have a biological and clinical impact not only on leukemias and lymphomas, but also on certain epithelial tumors. With the implementation of new and powerful cytogenetic and molecular techniques the identification of fusion genes in solid tumors is being facilitated. Overall, the study of chromosomal translocations have revealed several recurring themes, and reached important insights into the process of malignant transformation. However, the mechanisms behind these translocations remain unclear. A more thorough understanding of the mechanisms that cause translocations will be aided by continuing characterization of translocation breakpoints and by developing in vitro and in vivo model systems that can generate chromosome translocation.  相似文献   

5.
6.
Childhood acute lymphoblastic leukemia (ALL) with t(12;21), which results in expression of the ETV6/RUNX1 fusion gene, is the most common chromosomal lesion in precursor-B (pre-B) ALL. We identified 17 microRNAs that were downregulated in ETV6/RUNX1 + compared with ETV6/RUNX1 clinical samples. Among these microRNAs, miR-181a-1 was the most significantly reduced (by ~75%; P < 0.001). Using chromatin immunoprecipitation, we demonstrated that ETV6/RUNX1 directly binds the regulatory region of MIR181A1, and knockdown of ETV6/RUNX1 increased miR-181a-1 level. We further showed that miR-181a (functional counterpart of miR-181a-1) could target ETV6/RUNX1 and cause a reduction in the level of the oncoprotein ETV6/RUNX1, cell growth arrest, an increase in apoptosis, and induction of cell differentiation in ETV6/RUNX1 + cell line. Moreover, ectopic expression of miR-181a also resulted in decreased CD10 hyperexpression in ETV6/RUNX1 + primary patient samples. Taken together, our results demonstrate that MIR181A1 and ETV6/RUNX1 regulate each other, and we propose that a double negative loop involving MIR181A1 and ETV6/RUNX1 may contribute to ETV6/RUNX1-driven arrest of differentiation in pre-B ALL.  相似文献   

7.
8.
9.
Acute Lymphoblastic Leukemia (ALL) is the most common malignancy in childhood. The improvements of therapies have increased the number of long-term survivors. However, an increased incidence of secondary neoplasias has been observed in this cohort. Our purpose was to evaluate the late effects of cancer therapy in cured patients previously treated for ALL, considering previous reports on the occurrence of gene fusions as putative markers of chromosomal instability. Twelve ALL patients (aged 5 to 16 years) and twelve healthy subjects (aged 18 to 22 years) were studied for the presence of ETV6/RUNX1 (TEL/AML1) translocations, which were detected by FISH (fluorescence in situ hybridization). The blood samples were collected months or years after completion of the therapy, and the frequencies of gene fusions in lymphocytes were compared with those obtained retrospectively for bone marrow samples at the time of diagnosis, and also for the control group. It was demonstrated that ETV6/RUNX1 gene fusion was a frequent event (0.59-1.84/100 cells) in peripheral blood lymphocytes from normal individuals and the ALL patients who underwent chemotherapy showed significantly (P = 0.0043) increased frequencies (0.62-3.96/100 cells) of the rearrangement when compared with the control groups (patients at diagnosis and healthy subjects). However, a significant difference was not found between the groups of patients at diagnosis and healthy subjects, when the two patients who were positive for the rearrangement were excluded. Therefore, increased frequencies of ETV6/RUNX1 fusions in ALL cured patients indicate the influence of previous exposure to anti-cancer drugs, and they may represent an important genetic marker for estimating the risk of relapse, or development of secondary neoplasias.  相似文献   

10.
Zhang Y  Rowley JD 《DNA Repair》2006,5(9-10):1282-1297
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.  相似文献   

11.
The RUNX1/AML1 gene is the most frequent target for chromosomal translocation, and often identified as a site for reciprocal rearrangement of chromosomes 8 and 21 in patients with acute myelogenous leukemia. Virtually all chromosome translocations in leukemia show no consistent homologous sequences at the breakpoint regions. However, specific chromatin elements (DNase I and topoisomerase II cleavage) have been found at the breakpoints of some genes suggesting that structural motifs are determinant for the double strand DNA-breaks. We analyzed the chromatin organization at intron 5 of the RUNX1 gene where all the sequenced breakpoints involved in t(8;21) have been mapped. Using chromatin immunoprecipitation assays we show that chromatin organization at intron 5 of the RUNX1 gene is different in HL-60 and HeLa cells. Two distinct features mark the intron 5 in cells expressing RUNX1: a complete lack or significantly reduced levels of Histone H1 and enrichment of hyperacetylated histone H3. Strikingly, induction of DNA damage resulted in formation of t(8;21) in HL-60 but not in HeLa cells. Taken together, our results suggest that H1 depletion and/or histone H3 hyperacetylation may have a linkage with an increase susceptibility of specific chromosomal regions to undergo translocations.  相似文献   

12.
The 12p13 ETV6 (TEL) gene is frequently targeted by chromosomal translocations in human malignancies, resulting in the formation of oncogenic ETV6 gene fusions. Many of the known partner genes encode protein tyrosine kinases (PTKs), generating fusion proteins that function as chimeric PTKs. ETV6-NTRK3 (EN), comprised of the ETV6 SAM domain fused to the NTRK3 PTK, is unique among ETV6 chimeric oncoproteins, as it is expressed in cancers of multiple lineages. We initially hypothesized that, similar to other ETV6-PTK chimeras, SAM-mediated dimerization of EN leads to constitutive activation of the PTK and downstream signaling cascades. However, when the EN SAM domain was replaced with an inducible FK506 binding protein (FKBP) dimerization system, resulting FKBP-NTRK3 chimeras failed to transform NIH 3T3 cells even though PTK activation was preserved. It was recently shown that the ETV6 SAM domain has two potential interacting surfaces, raising the possibility that this domain can mediate protein polymerization. We therefore mutated each EN SAM binding interface in a manner shown previously to abolish self-association of wild-type ETV6. Each mutation completely blocked the ability of EN to polymerize, to activate its PTK, and to transform NIH 3T3 cells. Furthermore, EN itself formed large polymeric structures within cells while mutant EN proteins were present only as monomers. Finally, we observed a dominant negative effect on the transformation of isolated SAM domains coexpressed in EN-transformed cells. Taken together, our results suggest that higher-order polymerization may be a critical requirement for the transformation activity of EN and possibly other ETV6-PTK fusion proteins.  相似文献   

13.
14.
15.
Although chromosome translocations are well-documented recurrent events in hematological malignancies and soft tissue sarcomas, their significance in carcinomas is less clear. We report here the molecular characterization of the reciprocal translocation t(1;15)(p22;q22) in the prostate carcinoma cell line, LNCaP. The chromosome 1 breakpoint was localized to a single BAC clone, RP11-290M5, by sequential FISH analysis of clones selected from the NCBI chromosome 1 map. This was further refined to a 580-bp region by Southern blot analysis. A 2.85-kb fragment spanning the der(1) breakpoint was amplified by long-range inverse PCR. The breakpoint on chromosome 1 was shown to lie between the CYR61 and the DDAH1 genes with the der(1) junctional sequence linking the CYR61 gene to the TSPAN3 (TM4SF8) gene on chromosome 15. Confirmatory PCR and FISH mapping of the der(15) showed loss of chromosome material proximal to the breakpoint on chromosome 15, containing the PSTPIP1 and RCN2 genes. On the available evidence we conclude that this translocation does not result in an in-frame gene fusion. Comparative expressed sequence hybridization (CESH) and comparative genomic hybridization (CGH) analysis, showed relative down-regulation of gene expression surrounding the breakpoint, but no gross change in genomic copy number. Real-time quantitative RT-PCR for genes around the breakpoint supported the CESH data. Therefore, here we may have revealed a gene down-regulation mechanism associated with a chromosome translocation, either through small deletion at the breakpoint or through another means of chromosome domain related gene regulation.  相似文献   

16.
Recurrent translocation t(8;21)(q22;q22) acute myeloid leukemia (AML) is often associated with secondary chromosome changes of which the clinical significance is not clear since they do not seem to impair the prognosis. Uncommon chromosome changes may lead to the identification of leukemogenetic factors associated with t(8;21) since the AML1/RUNX1-ETO fusion gene resulting from the translocation is thought to be unable alone to induce leukemia. We here report a patient with AML, t(8;21) and ring chromosome 8 resulting in partial chromosome 8 deletion. Another patient with partial 8q deletion has been previously reported. It is suggested that more attention be paid to the genes located in distal 8q in relation to leukemogenesis.  相似文献   

17.
Aims: Variant translocations involving 9q, 22q and at least one additional genomic locus occur in 5-10% of the patients with chronic myeloid leukemia (CML). The mechanisms for the formation of these variant translocations are not fully characterized. Here we report CML cases presenting a variant translocation indicating two-step mechanism with rare/novel chromosomal rearrangement. Methods: Karyotype analysis was performed on metaphases obtained through short-term cultures of bone marrow and blood. Detection of BCR-ABL fusion gene was performed using dual-color dual-fusion (D-FISH) and extra signal (ES) translocation probes. BAC-FISH was also carried out. Results: In Patient 1, the third partner chromosome was der(11)(p15) with a 2F2G1R signal pattern, which is an unusual signal pattern with the two-step mechanism. Patients 2 and 3 showed typical positive (2F1G1R) signal pattern. In Patient 2, both the chromosome 22s were involved in variant formation. The second fusion was observed below the BCR gene of the second homologue. In Patient 3 the third chromosome was der(13)(q14). The fourth patient showed a variant pattern with BCR/ABL-ES probe involving der(X)(q13) region. Conclusion: The presence of different rearrangements of both 9q34 and 22q11 regions highlights the genetic heterogeneity of this subgroup of CML. In each case with variants, further studies with FISH, BAC-FISH or more advanced technique such as microarray should be performed. Future studies should be performed to confirm the presence of true breakpoint hot spots and assess their implications in CML with variant Ph.  相似文献   

18.
The behavior of a translocation chromosome t(6; 19) in the lymphocytes of a mentally retarded woman with other anomalies has been analyzed. The two chromosomes were attached at the telomeres of their short arms without any apparent deletion. The centromere of chromosome 19 was marked by a primary constriction and the site of the centromere of chromosome 6 by a C-band, but no constriction. The translocation chromosome showed two primary constrictions once in 8,800 metaphases, probably resulting from mitotic crossing-over. One or both chromatids of the translocation chromosome were broken at the attachment point with a frequency of 1/733 cells. In addition, the chromosome was often bent at this point and the translocated chromosomes 19 and 6 showed a differential spiralization. In this characteristic as well as the weakness of the fusion point, this chromosome differed from other translocations; the fusion obviously was not as firm as in translocations in general. The broken-off chromosome 6 did not regain a primary constriction, but had the appearance of a large acentric fragment. The segregation of the translocation chromosome and the fragment gave rise to a complicated mosaicism with various levels of ploidy for the fragment lacking a functional centromere. The data are in quantitative agreement with the equilibrium expectations under the assumption that each fragment goes to either pole at random in mitosis and that cells divide at the same rate regardless of ploidy. The high rate of nondisjunction of the fragment showed that the inactivated centromere of the translocation chromosome did not regain its activity when chromosome 19 with the functional centromere became separated from it. — The fragility and the behavior of the translocation chromosome and the production of telomeric associations are briefly discussed.  相似文献   

19.
Cancer is caused by specific DNA damage. Several common mechanisms that cause DNA damage result in specific malignant disorders: First, proto-oncogenes can be activated by translocations. For example, translocation of the c-myc proto-oncogene from chromosome 8 to one of the immunoglobulin loci on chromosomes 2, 14, or 22 results in Burkitt''s lymphomas. Translocation of the c-abl proto-oncogene from chromosome 9 to the BCR gene located on chromosome 22 produces a hybrid BCR/ABL protein resulting in chronic myelogenous leukemia. Second, proto-oncogenes can be activated by point mutations. For example, point mutations of genes coding for guanosine triphosphate-binding proteins, such as H-, K-, or N-ras or G proteins, can be oncogenic as noted in a large variety of malignant neoplasms. Proteins from these mutated genes are constitutively active rather than being faithful second messengers of periodic extracellular signals. Third, mutations that inactivate a gene can result in tumors if the product of the gene normally constrains cellular proliferation. Functional loss of these "tumor suppressor genes" is found in many tumors such as colon and lung cancers. The diagnosis, classification, and treatment of cancers will be greatly enhanced by understanding their abnormalities at the molecular level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号