首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To verify the previous theoretical prediction that the disturbed flow distal to a stenosis enhances lipid accumulation at the blood/arterial wall interface, we designed a canine carotid arterial stenosis model and measured ex vitro the luminal surface concentration of bovine serum albumin (as a tracer macromolecule) by directly taking liquid samples from the luminal surface of the artery. The experimental results showed that due to the presence of a filtration flow, the luminal surface albumin concentration c w was higher than the bulk concentration c 0 as predicted by our theory. The measurement revealed that the luminal surface concentration of macromolecules was indeed enhanced significantly in regions of the disturbed flow. At Re = 50, the relative luminal surface concentration c w/c 0 was 1.66 ± 0.10 in the vortex region, while the c w/c 0 was 1.37 ± 0.06 in the laminar flow region. When Re increased to 100, the c w/c 0 in the vortex flow region and the laminar flow region reduced to 1.39 ± 0.07 and 1.24 ± 0.04, respectively. The effect of the filtration rate, v w, on the luminal surface concentration of albumin was remarkably apparent. At Re = 50 and 100, when v w = 8.9 ± 1.7 × 10−6 cm/s, c w in the vortex region was 77% and 52% higher than c 0 respectively, meanwhile when v w = 4.8 ± 0.6 × 10−6 cm/s, c w in the vortex region was only 66% and 39% higher than c 0 respectively. In summary, the present study has provided further experimental evidence that concentration polarization can occur in the arterial system and fluid layer with highly concentrated lipids in the area of flow separation point may be responsible for the formation and development of atherosclerosis.  相似文献   

2.
The use of rotating flow in an annulus is investigated as a means of enhancing the yield of glucose and xylose in the acid hydrolysis of cellulosic slurries. A one-dimensional model of such a cyclone reactor is developed for flow cases, co-current and counter-current flow. For the case of 250°C, 1% w/w acid, the one-dimensional model indicates an increase in the maximum glucose yield from 48.1% in a plug flow reactor to 69.3% in a co-current cyclone reactor, and up to 81.0% in a countercurrent cyclone reactor. The corresponding xylose yields are 91.6% for co-current operation and 97.7% for countercurrent operation. In the co-current case the maximum glucose and xylose yields do not occur at the same location in the reactor; however, in the countercurrent case they do. Although product yields are dramatically improved over those obtained in a plug flow reactor, the product concentrations are lower than would typically be obtained in a plug flow reactor.List of Symbols A cm2 cross sectional area perpendicular to radial flow - A c cm2 cross sectional area of slurry inlet - A c cm2 cross sectional area of steam inlet - A w cm2 cross sectional area of water inlet - C c concentration of cellulose as potential glucose (grams of potential glucose/cm3 of total stream) - C c * grams cellulose/cm3 of solids concentration of cellulose as potential glucose - C ginitial * grams glulose/cm3 of solids concentration of cellulose entering reactor - C g grams glucose/cm3 of total stream concentration of glucose - C g * grams glucose/cm3 of liquid stream concentration of glucose - C cinitial * grams cellulose/cm3 of liquid concentration of glucose entering reactor - C xn concentration of xylan as potential xylose (grams of potential xylose/cm3 of total stream) - C xs grams xyclose/cm3 of total stream concentration of nylose - d f dilution factor - dr cm radial increment - g cm/s2 gravitational acceleration - g * centrifugal acceleration proportionality constant - h cm height of cyclone reactor - j cm/s flux - K constant in general equation for vortex flow, Eq. (4.9) - k 1 1/s kinetic rate constant of cellulose hydrolysis - k a 1/s kinetic rate constant of xylan hydrolysis - k 2 1/s kinetic rate constant of glucose decomposition - k 2a 1/s kinetic rate constant of xylose decomposition - m vortex exponent - M steam g/s mass rate of steam addition at outer radius - M water g/s mass rate of cold water addition at outer radius - n cm3/s empirically determined settling parameter - Q cm3/s net volumetric flow in outward radial direction - Q tot cm3/s total volumetric flow through reactor - q c cm3/s volumetric flow of slurry feed - q s cm3/s volumetric flow of stream feed - q water cm3/s volumetric flow of cold water feed - r cm radial position - r c 1/s rate of cellulose hydrolysis - r g 1/s rate of glucose decomposition - r i cm inner radius - r o cm outer radius - r xn 1/s rate of xylan hydrolysis - r xs 1/s rate of xylose decomposition - s mom cm g/s2 inlet steam momentum - T bulk s bulk residence time in reactor - T °C reactor temperature - v c cm3/g specific volume of slurry feed - v s cm3/g specific volume of steam - v w cm3/g specific volume of water - V f cm/s velocity of liquid as a function of radius - V i cm/s inlet velocity - V s cm/s velocity of solids as a function of radius - V steam cm/s inlet steam velocity to cyclone - V cm/s terminal settling velocity - V q cm/s tangential velocity - w mom cm g/s2 water inlet momentum - Y grams product out/grams reactant in yield of product - solids volumetric fraction - f solids volumetric fraction in slurry feed - i initial solids volumetric fraction of slurry - Pi  相似文献   

3.
At 7 days after first feeding (DAFF), the peptide hormone cholecystokinin (CCK) content (fmol individual?1) and the tryptic activity [μmol arginine‐methyl‐coumarinyl‐7‐amide (MCA) min?1 individual?1] per individual gut of Atlantic halibut Hippoglossus hippoglossus larvae were low: 0·2 ± 0·1 and 0·14 ± 0·10, respectively. Thereafter, both parameters increased with the increase in gut mass and reached 19·67 ± 5·58 and 2·71 ± 0·64 at 26 DAFF, respectively. Due to the small sample size, the dry mass (MG, mg) of the individual gut could not be determined accurately at 7 DAFF. At 13 DAFF MG represented 5·5% of whole body dry mass (Mw, mg) while at 26 DAFF it had increased to 23%. The mass specific tryptic activity [μmol MCA min?1 per mg dry mass (M)] in the gut increased from 2·74 ± 1 ± 98 at 13 DAFF to 5·00 ± 0·78 at 26 DAFF. There was more individual variation in the mass specific CCK content (fmol M?1) but no significant differences were found, although the data indicated an increase (from 23·38 ± 11·26 at 13 DAFF to 36·27 ± 8·96 fmol M?1 at 26 DAFF). At 7 DAFF the CCK content of the gut represented c. 2% of the whole body CCK content while it increased to c. 62% of the whole body CCK content at 26 DAFF. This demonstrates that it is necessary to separate neural and gastrointestinal sources of CCK in order to determine its alimentary role in fish larvae. Trypsin activity was only found in the gut compartment. In larvae aged 45 DAFF dietary proteins delivery into the gut by tube‐feeding appeared to stimulate post‐prandial secretion of CCK from the gut as well as stimulate pancreatic trypsin secretion, suggesting that both factors contribute to protein digestion.  相似文献   

4.
A fish respirometer-metabolism chamber was used to obtain in vivo respiratory-cardiovascular and chloroethane gill flux data on transected channel catfish (Ictalurus punctatus). Methods used for spinal transection, attachment of an oral membrane (respiratory mast), placement and attachment of blood cannulas and urine catheters are described. Respiratory physiology, cardiac output and chemical extraction efficiencies for 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachloroethane (HCE) were determined on 419–990 g catfish. The overall mean values (± s.d.) for ventilation volume (Qv), effective respiratory volume (Qw), oxygen consumption (Vo2 and percentage utilization of oxygen (U) were 17-3 ±4–71 h?1 kg?1, 9·8±l·71 h?1 kg?1, 71·6±12·5mg h?1 kg?1, and 49± 10%, respectively, while cardiac output calculated via the Fick Method was 2·4±0·61 h?1 kg?1. Additional measurements were made on ventilation rate (Vr), total plasma protein, haematocrit (Hct), and urine volume; while both arterial and venous blood were analysed for pH, oxygen partial pressure (P02), carbon dioxide partial pressure (Pco2), total oxygen (To2), total carbon dioxide (Tco2) and total ammonia (TAMM). Physiological measurements taken at 24 h were not significantly different from those taken at 48 h and indicated no deterioration of the in vivo preparation. All of these values agreed well with literature values on UTitransected channel catfish, except for Hct which was lower for cannulated animals used in this study. Overall, these data provide strong support for the use of transected channel catfish for in vivo collection of physiological and chemical gill flux data. The mean initial chemical extraction efficiencies for TCE, PCE and HCE were 41, 61 and 73%, respectively. Chemical clearances (ClX) for these same three chemicals were 5·9, 9·3 and 10·8 1 h?1 kg?1, respectively. The approximate 1: 1 relationship between effective respiratory volume (Qw) and chemical clearance (Clx) indicated that branchial uptake of PCE and HCE was water flow-limited. Chemical gill flux observed for channel catfish and chloroethanes was similar to that observed for rainbow trout in previous studies and provided further support for the flow-limited model of chemical flux across fish gills.  相似文献   

5.
6.
Biofilms of sulphate-reducing Desulfovibrio sp. EX265 were grown in square section glass capillary flow cells under a range of fluid flow velocities from 0.01 to 0.4 m/s (wall shear stress, τw, from 0.027 to 1.0 N/m2). In situ image analysis and confocal scanning laser microscopy revealed biofilm characteristics similar to those reported for aerobic biofilms. Biofilms in both flow cells were patchy and consisted of cell clusters separated by voids. Length-to-width ratio measurements (l c:w c) of biofilm clusters demonstrated the formation of more “streamlined” biofilm clusters (l c:w c=3.03) at high-flow velocity (Reynolds number, Re, 1200), whereas at low-flow velocity (Re 120), the l c:w c of the clusters was approximately 1 (l c:w c of 1 indicates no elongation in the flow direction). Cell clusters grown under high flow were more rigid and had a higher yield point (the point at which the biofilm began to flow like a fluid) than those established at low flow and some biofilm cell aggregates were able to relocate within a cluster, by travelling in the direction of flow, before attaching more firmly downstream. Received 01 February 2002/ Accepted in revised form 16 July 2002  相似文献   

7.
A Malvern laser light-scattering instrument has been modified for use at scattering angles down to 5° and both total intensity and quasi-elastic scattering experiments. A sample of sheared, length-fractionated calf-thymus DNA was characterized by sedimentation, viscosity and electron microscopy. Quasi-elastic scattering and absolute intensity determinations were performed with the laser instrument and intensity determinations only with a Fica conventional light-scattering photometer. The total intensity experiments gave M?w = (3.75 ± 0.15) × 106 and 〈R21/2z = (206.9 ± 10.3) nm which yielded a value for the persistence length, allowing for polydispersity, of 66 ± 6nm. The quasi-elastic experiments at scattering angles below 20° gave D020, w = (2.23 ± 0.06) × 10?8 cm2/sec which combined with S020, w = 15.6 in the Svedberg equation gave M?w = (3.73 ± 0.18) × 106. In addition, from the higher angle data we extracted a value of the longest intramolecular relaxation time, τ1 of 17.5 msec. This is not in particularly good agreement with τ1 predicted by the Zimm–Rouse theory using our other experimental parameters. The disagreement may be due to the restricted applicability of the Zimm–Rouse spring-bead model as a quantitative representation of DNA molecules. Alternatively, it may be due to present difficulties in the unambiguous interpretation of molecular motions from the experimental autocorrelation functions.  相似文献   

8.
The experiments and simulations reported in this paper show that, for stomata sensitive to both CO2 and water vapour concentrations, responses of stomatal conductance (gws) to boundary layer thickness have two components, one resulting from changes in intercellular CO2 concentration (χci) and another from changes in leaf surface water vapour saturation deficit (Dws). The experiments and simulations also show that the boundary layer conductance (gwb) can significantly alter the apparent response of gws to ambient air CO2 mole fraction (χca) and water vapour mole fraction (χwa). Because of the feedback loop involved the responses of gws for χca and χwa each include responses to both χci and Dws. The boundary layer alters the state of the variables sensed by the guard cells—i.e. χci and Dws—and so it is a source of feedback. Thus, when scaling up from responses of stomata to the response of gws for a whole leaf, the effect of the boundary layer must be considered. The results indicate that, for given responses of gws to χci and Dws, the apparent responses of gws to Dwa and χca depend on the size of the leaf and wind speed, showing that this effect of the boundary layer should be considered when comparing data measured under different conditions, or with different methods.  相似文献   

9.
In ruminants, the uptake of inorganic phosphate (Pi) across the intestinal mucosa epithelium by Na-dependent and Na-independent mechanisms is a main regulatory factor in P homeostasis. The aim of the study was to elucidate to which extent Na-independent mechanisms, including pH effects or composition of mucosal brush-border membranes, could be involved in positive stimulation of Pi absorptive processes seen under the P deficient condition. Therefore, luminal, surface and intracellular pH of the jejunal epithelial cells in control and P depleted goats were compared and biochemical analyses of membrane phospholipids in the apical membrane of the jejunal epithelium were performed. Dietary P depletion resulted in decreased plasma Pi levels. While pH in jejunal ingesta was not significantly changed, P depletion resulted in a significantly lower surface pH in the crypt region compared to control animals (7.62 ± 0.02 vs. 7.77 ± 0.04, n = 4, P < 0.01). Inhibition of apical Na+/H+-exchange resulted in an increase of the jejunal surface pH in P depleted animals by 0.07 ± 0.01 (n = 6, P < 0.01) and 0.05 ± 0.01 (n = 6, P < 0.01) for the villus and the crypt region, respectively. This increase were inversely correlated with the initial surface pH prior to inhibition. In contrast to surface pH, intracellular pH of the jejunal epithelium and the phospholipid composition of the apical jejunal membrane were not affected by P depletion. Although the data suggest the existence of a Na+/H+-exchange mechanism at the luminal surface of goat jejunum they do not support the hypothesis that adaptational processes of active Pi absorption from goat jejunum in response to low dietary P could be based on “non Pi transporter events”.  相似文献   

10.
We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl2·6H2O along with initial pH 7.0 at 35°C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l−1, which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l−1). B. vietnamiensis M6 showed resistance against different environmental stresses like 10–45°C, 1–5% (w/v) salt, and 2–11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca3(PO4)2, CaHPO4, and hydroxyapatite was 1,039, 2,132, and 1,754 mg l−1, respectively. However, the strain M6 produced soluble P with 20 mg l−1 from FePO4 after 2 days and 100 mg l−1 from AlPO4 after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.  相似文献   

11.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

12.
The transport of atherogenic lipids (LDL) in a straight segment of an artery with a semi-permeable wall was simulated numerically. The numerical analysis predicted that a mass transport phenomenon called ’concentration polarization’ of LDL might occur in the arterial system. Under normal physiological flow conditions, the luminal surface LDL concentration was 5%–14% greater than the bulk concentration in a straight segment of an artery. The luminal surface LDL concentration at the arterial wall was flow-dependent, varying linearly with the filtration rate across the arterial wall and inversely with wall shear rate. At low wall shear rate, the luminal surface LDL concentration was very sensitive to changes in flow conditions, decreasing sharply as wall shear rate increased. In order to verify the numerical analysis, the luminal surface concentration of bovine serum albumin (as a tracer macromolecule) in the canine carotid artery was measured in vitro by directly taking liquid samples from the luminal surface of the artery. The experimental result was in very good agreement with the numerical analysis. The authors believe that the mass transport phenomenon of ‘concentration polarization’ may indeed exist in the human circulation and play an important role in the localization of atherosclerosis.  相似文献   

13.
Water-use strategies of Populus tremula and Tilia cordata, and the role of abscisic acid in these strategies, were analysed. P. tremula dominated in the overstorey and T. cordata in the lower layer of the tree canopy of the temperate deciduous forest canopy. Shoot water potential (), bulk-leaf abscisic acid concentration ([ABA]leaf), abscisic acid concentration in xylem sap ([ABA]xyl), and rate of stomatal closure following the supply of exogenous ABA (v) decreased acropetally through the whole tree canopy, and foliar water content per area (w), concentration of the leaf osmoticum (c), maximum leaf-specific hydraulic conductance of shoot (L), stomatal conductance (gs), and the threshold dose per leaf area of the exogenous ABA (da) required to reduce stomatal conductance increased acropetally through the tree canopy (from the base of the foliage of T. cordata to the top of the foliage of P. tremula) in non-stressed trees. The threshold dose per leaf dry mass of the exogenous ABA (dw) required to reduce stomatal conductance, was similar through the tree canopy. After a drought period (3 weeks), the , w, L, gs, da and dw had decreased, and c and v had increased in both species. Yet, the effect of the drought period was more pronounced on L, gs, da, dw and v in T. cordata, and on , w and c in P. tremula. It was concluded that the water use of the species of the lower canopy layer—T. cordata, is more conservative than that of the species of the overstorey, P. tremula. [ABA]leaf had not been significantly changed in these trees, and [ABA]xyl had increased during the drought period only in P. tremula. The relations between [ABA]leaf, [ABA]xyl and the stomatal conductance, the osmotic adjustment and the shoot hydraulic conductance are also discussed.  相似文献   

14.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

15.
An amiloride-sensitive, Ca2+-activated nonselective cation (NSC) channel in the apical membrane of fetal rat alveolar epithelium plays an important role in stimulation of Na+ transport by a beta adrenergic agonist (beta agonist). We studied whether Ca2+ has an essential role in the stimulation of the NSC channel by beta agonists. In cell-attached patches formed on the epithelium, terbutaline, a beta agonist, increased the open probability (P o ) of the NSC channel to 0.62 ± 0.07 from 0.03 ± 0.01 (mean ±se; n= 8) 30 min after application of terbutaline in a solution containing 1 mm Ca2+. The P o of the terbutaline-stimulated NSC channel was diminished in the absence of extracellular Ca2+ to 0.26 ± 0.05 (n= 8). The cytosolic Ca2+ concentration ([Ca2+] c ) in the presence and absence of extracellular Ca2+ was, respectively, 100 ± 6 and 20 ± 2 nm (n= 7) 30 min after application of terbutaline. The cytosolic Cl concentration ([Cl] c ) in the presence and absence of extracellular Ca2+ was, respectively, 20 ± 1 and 40 ± 2 mm (n= 7) 30 min after application of terbutaline. The diminution of [Ca2+] c from 100 to 20 nm itself had no significant effects on the P o if the [Cl] c was reduced to 20 mm; the P o was 0.58 ± 0.10 at 100 nm [Ca2+] c and 0.55 ± 0.09 at 20 nm [Ca2+] c (n= 8) with 20 mm [Cl] c in inside-out patches. On the other hand, the P o (0.28 ± 0.10) at 20 nm [Ca2+] c with 40 mm [Cl] c was significantly lower than that (0.58 ± 0.10; P < 0.01; n= 8) at 100 nm [Ca2+] c with 20 mm [Cl] c , suggesting that reduction of [Cl] c is an important factor stimulating the NSC channel. These observations indicate that the extracellular Ca2+ plays an important role in the stimulatory action of beta agonist on the NSC channel via reduction of [Cl] c . Received: 11 August 2000/Revised: 4 December 2000  相似文献   

16.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   

17.
Guy C. Fletcher 《Biopolymers》1976,15(11):2201-2217
Solutions of native collagen extracted from rat tail tendons in neutral salt solution have been studied by dynamic light scattering. The spectra obtained are consistent with the presence in solution of both single rod-shaped collagen molecules and aggregates of molecules. No contribution to the spectrum has been detected at any scattering angle from rotational diffusion of single molecules, although a measurable broadening effect is expected at high angles. The translational diffusion coefficient D of single molecules, calculated from the broader spectral component, shows an anomalous dependence on collagen concentration with a maximum value of D20,w = 8.6 ± 0.2 × 10?12 m2/sec near the concentration 0.04% by weight. Above 0.05% D falls linearly with increasing concentration and takes the value D 20,w = 8.1 ± 0.2 × 10?12 m2/sec at 0.064% collagen.  相似文献   

18.
Isolated characean internodal cells of Nitellopsis obtusa can be stored in artificial pond water for many days, but they cannot survive in 100mol m?3 NaCl solution unless more than several mol m?3 Ca2+ is added. Short-term effects of NaCl stress on the cytosolic concentration of Ca2+ ([Ca2+]c), cytosolic pH (pHc) and vacuolar pH (pHv) were studied in relation to the external concentration of Ca2+ ([Ca2+]e). Changes in [Ca2+]c were measured with light emission from a Ca2+-sensitive photoprotein, semisynthetic fch-aequorin which had been injected into the cytosol. Both pHc and pHv were measured with double-barrelled pH-sensitive microelectrodes. When internodal cells were treated with 100 mol m?3 NaCl (0–1 mol m?3 NaCl (0.1 mol m?3 [Ca2+]e), [Ca2+]c increased and then recovered to the original level within 60 min. The time course of the transient change in [Ca2+]c was not influenced by the level of [Ca2+]c (0.1 and 10 mol m?3). In some cases, the transient increase in [Ca2+]c was induced only by increasing external osmotic pressure with sorbitol. In response to treatment with 100 mol m?3 NaCl (0.1 mol m?3 [Ca2+]c), pHc decreased by 0.1–0.2 units after 10min but recovered after 30–60 min, while pHv increased by 0.4–0.5 units after 2–50 min and tended to recover after 60 min. The initial changes in both pHc and pHv were suppressed when [Ca2+]e was raised from 0.1 to 10mol m?3. These results show that the charophyte alga Nitellopsis can regulate [Ca2+]c, pHc and pHv under NaCl stress in the short term and that the protective effect of Ca2+ on salinity stress is apparently unrelated to perturbation of Ca2+ and pH homeostasis.  相似文献   

19.
The objective of this study was to determine the effect of freezing on the function in Atlantic salmon Salmo salar spermatozoa. The semen was frozen in Cortland's medium + 1.3M dimethyl sulphoxide + 0.3M glucose + 2% bovine serum albumin (final concentration) in a ratio of 1:3 (semen:cryoprotectant) as the treatment (T) and fresh semen as the control (F). Straws of 0·5 ml of sperm suspension were frozen in 4 cm of N2L. They were thawed in a thermoregulated bath (40° C). After thawing, the percentage of spermatozoa with fragmented DNA [transferase dUTP (deoxyuridine triphosphate) nick‐end labelling (TUNEL)], plasma membrane integrity (SYBR‐14/PI) and mitochondrial membrane potential (ΔΨMMit, JC‐1) were evaluated by flow cytometry and motility was evaluated by optical microscope under stroboscopic light. The fertilization rates of the control and treatment semen were tested at a sperm density of 1·5 × 107 spermatozoa oocyte?1, by observation of the first cleavages after 16 h incubation at 10° C. In the cryopreserved semen (T), the mean ± s.d . DNA fragmentation was 4·8 ± 2·5%; plasma membrane integrity 75·2 ± 6·3%; mitochondrial membrane potential 51·7 ± 3·6%; motility 58·5 ± 5·3%; curved line velocity (VCL) 61·2 ± 17·4 µm s?1; average‐path velocity (VAP) 50·1 ± 17·3 µm s?1; straight‐line velocity (VSL) 59·1 ± 18·4 µm s?1; fertilization rate 81·6 ± 1·9%. There were significant differences in the plasma membrane integrity, mitochondrial membrane potential, motility, fertilization rate, VCL, VAP and VSL compared with the controls (P < 0·05). Also the mitochondrial membrane potential correlated with motility, fertilization rate, VCL and VSL (r = 0·75; r = 0·59; r = 0·77 and r = 0·79, respectively; P < 0·05); and the fertilization rate correlated with VCL and VSL (r = 0·59 and r = 0·55, respectively).  相似文献   

20.
Diffusion of bovine serum albumin in a neutral polymer solution   总被引:3,自引:0,他引:3  
G D Phillies 《Biopolymers》1985,24(2):379-386
The diffusion coefficient D of bovine serum albumin through various solutions (pH 7.0, 0.5M NaCl) of polythylene oxide (Mw ~ 1 × 105, 3 × 105) was studied with quasielastic light scattering. In solutions of the 1 × 105 polymer solution at polymer concentrations above 0.5 g/L, D is considerably greater than would have been expected from the viscosity of water:polymer mixtures, the deviations being larger at low protein concentration that at high protein concentration. With either polymer, D falls with increasing protein concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号