共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Proteolytic degradation of recombinant proteins is an industry-wide challenge in host organisms such as Escherichia coli. These proteases have been linked to stresses, such as the stringent and heat-shock responses. This study reports the dramatic up-regulation of protease activity in an industrial recombinant E. coli fermentation upon induction. The objective of this project was to detect and characterize up-regulated proteases due to recombinant AXOKINE overexpression upon IPTG induction. AXOKINE is a 22-kDa protein currently in clinical trials as a therapeutic for obesity associated with diabetes. AXOKINE was expressed in both the soluble and inclusion body fractions in E. coli. Sodium dodecyl sulfate gelatin-polyacrylamide gel electrophoresis (SDS-GPAGE) was used to analyze the up-regulated protease activity. Western blot analysis showed degraded AXOKINE in both the soluble and insoluble fractions. Protease inhibitors were used to characterize the proteases. The proteases were ethylenediaminetetraacetic acid (EDTA) sensitive. The protease activity increased in the presence of phenyl-methyl sulfonyl-fluoride (PMSF), a serine protease inhibitor. The incubation buffer composition was varied with respect to Mg2+ and ATP, and the protease activity was ATP independent and Mg2+ dependent. A two-dimensional electrophoresis technique was used to estimate the pI of the proteases to be between 2.9 and 4.0. 相似文献
4.
L-tyrosine (L-tyr) overproducing Escherichia coli strain derived from an L-phenylalanine (L-phe) overproducing strain is characterized in 10 L and 200 L scale fermentations. Deletion of the chromosomal region encoding for the pheA gene, chorismate mutase/prephenate dehydratase, its leader peptide (pheL) and its associated promoter resulted in significant increase in L-tyr production (Olson et al., 2007. Appl Microbiol Biotechnol 74(5):1031-1040). Further increase in titer was achieved by overexpressing tyrA, encoding chorismate mutase/prephenate dehydrogenase, from a strong non-native trc promoter (Olson et al., 2007. Appl Microbiol Biotechnol 74(5):1031-1040). Fermentation optimization studies include media component selection; glucose feed optimization, antifoam agent selection, and understanding fermentation parameters affecting foaming. Generational stability of the strain was evaluated along with rate, titer, and yield of tyrosine formation from glucose. L-tyr titer of 55 g/L in 48 h was demonstrated in 200 L batches, is the highest titer published till date. We have also evaluated two primary separations schemes to isolate and purify L-tyr from the fermentation broth. Physical separation of L-tyr crystals from biomass using a decanter type centrifuge, based on the density difference between the solids, is compared and contrasted with a strategy where L-tyr is first dissolved at pH 11.5 and then acid precipitated from clarified supernatants following removal of biomass using membrane filtration. L-tyr product purity of 98% with yields ranging from 90% to 95% is demonstrated. 相似文献
5.
6.
以一株表达人胰高血糖素样肽-1融合蛋白的重组大肠杆菌为研究对象,首先通过摇瓶实验对碳源种类进行了初步选择,发现葡萄糖和甘油对菌体生长以及GLP-1融合蛋白表达较为适宜。进一步在5 L反应器上对初始葡萄糖及甘油浓度进行了考察,发现高浓度碳源有利于菌体生长却抑制GLP-1融合蛋白表达,但能提高GLP-1融合蛋白的体积得率。在0.25%初始葡萄糖或甘油存在的条件下,在培养过程中流加葡萄糖或甘油维持其在发酵液中的浓度,比较了两者对菌体生长以及GLP-1融合蛋白表达的影响,结果发现,以甘油为碳源时,菌体生长以及GLP-1融合蛋白的表达量均高于以葡萄糖为碳源的结果,最终发酵液的菌浓(OD_(600))可达到25.4,较葡萄糖为碳源时19.1提高了33.0%,GLP-1融合蛋白表达水平和体积得率分别可达到22.4%和1.051 g/L,较葡萄糖为碳源的15.8%和0.504 g/L分别提高41.8%和108.5%。该结果对GLP-1融合蛋白表达菌株发酵条件的进一步优化提供了依据。 相似文献
7.
Pyruvate oxidase (PyOD) is a very powerful enzyme for clinical diagnostic applications and environmental monitoring. Influences of temperature on cell growth, plasmid stability, and PyOD expression during the PyOD fermentation process by recombinant Escherichia coli were investigated. Based on the influences of temperature on the physiological metabolism, a novel high-cell density fed-batch cultivation with gradient temperature decrease strategy for effective PyOD production was achieved, under which the biomass (OD600) of recombinant E. coli could reach to 71 and the highest PyOD activity in broth could reach to 3,307 U/L in 26?hr fermentation. 相似文献
8.
9.
响应面分析法优化重组大肠杆菌生物合成谷胱甘肽的条件 总被引:1,自引:0,他引:1
通过响应面分析法和典型性分析得出重组大肠杆菌酶法合成谷胱甘肽的最优条件:菌体量249 mg/mL,磷酸钾缓冲液145 mmol/L,MgCl243 mmol/L和ATP 34 mmol/L,预测谷胱甘肽最大量为16.50 mmol/L。验证性实验证明在优化条件下,重组大肠杆菌酶法合成谷胱甘肽达16.42 mmol/L。响应面分析还表明,在重组大肠杆菌酶法合成谷胱甘肽各因素中,MgCl2和ATP,以及菌体量与磷酸钾缓冲液之间的交互作用较显著。 相似文献
10.
Aim: To investigate the effects of feeding and induction strategies on the production of Bm R1 recombinant antigen.
Methods and Results: Fed-batch fermentation was studied with respect to the specific growth rate and mode of induction to assess the growth potential of the bacteria in a bioreactor and to produce high yield of Bm R1 recombinant antigen. Cells were grown at a controlled specific growth rate (μset ) during pre-induction, followed by constant feeding postinduction. The highest biomass (24·3 g l−1 ) was obtained during fed-batch process operated at μset of 0·15 h−1 , whereby lower μset (0·075 h−1 ) gave the highest protein production (9·82 mg l−1 ). The yield of Bm R1 was increased by 1·2-fold upon induction with 1 mmol l−1 IPTG (isopropyl-β- d -thiogalactoside) compared to using 5 mmol l−1 and showed a further 3·5-fold increase when the culture was induced twice at the late log phase.
Conclusions: Combination of feeding at a lower μset and twice induction with 1 mmol l−1 IPTG yielded the best result of all variables tested, promising an improved method for Bm R1 production .
Significance and Impact of the Study: This method can be used to increase the production scale of the Bm R1 recombinant antigen to meet the increasing demand for Brugia Rapid™ , a commercial diagnostic test for detection of brugian filariasis. 相似文献
Methods and Results: Fed-batch fermentation was studied with respect to the specific growth rate and mode of induction to assess the growth potential of the bacteria in a bioreactor and to produce high yield of Bm R1 recombinant antigen. Cells were grown at a controlled specific growth rate (μ
Conclusions: Combination of feeding at a lower μ
Significance and Impact of the Study: This method can be used to increase the production scale of the Bm R1 recombinant antigen to meet the increasing demand for Brugia Rapid
11.
The worldwide surplus of glycerol generated as inevitable byproduct of biodiesel fuel and oleochemical production is resulting in the shutdown of traditional glycerol-producing/refining plants and new applications are needed for this now abundant carbon source. In this article we report our finding that Escherichia coli can ferment glycerol in a pH-dependent manner. We hypothesize that glycerol fermentation is linked to the availability of CO(2), which under acidic conditions is produced by the oxidation of formate by the enzyme formate hydrogen lyase (FHL). In agreement with this hypothesis, glycerol fermentation was severely impaired by blocking the activity of FHL. We demonstrated that, unlike CO(2), hydrogen (the other product of FHL-mediated formate oxidation) had a negative impact on cell growth and glycerol fermentation. In addition, supplementation of the medium with CO(2) partially restored the ability of an FHL-deficient strain to ferment glycerol. High pH resulted in low CO(2) generation (low activity of FHL) and availability (most CO(2) is converted to bicarbonate), and consequently very inefficient fermentation of glycerol. Most of the fermented glycerol was recovered in the reduced compounds ethanol and succinate (93% of the product mixture), which reflects the highly reduced state of glycerol and confirms the fermentative nature of this process. Since glycerol is a cheap, abundant, and highly reduced carbon source, our findings should enable the development of an E. coli-based platform for the anaerobic production of reduced chemicals from glycerol at yields higher than those obtained from common sugars, such as glucose. 相似文献
12.
Dr. Emily B. Schirmer Kathryn Golden Jin Xu Jesse Milling Alec Murillo Patricia Lowden SriHariRaju Mulagapati Jinzhao Hou Joseph T. Kovalchin Allyson Masci Kathryn Collins Gregory Zarbis-Papastoitsis 《Biotechnology journal》2013,8(8):946-956
Through a parallel approach of tracking product quality through fermentation and purification development, a robust process was designed to reduce the levels of product-related species. Three biochemically similar product-related species were identified as byproducts of host-cell enzymatic activity. To modulate intracellular proteolytic activity, key fermentation parameters (temperature, pH, trace metals, EDTA levels, and carbon source) were evaluated through bioreactor optimization, while balancing negative effects on growth, productivity, and oxygen demand. The purification process was based on three non-affinity steps and resolved product-related species by exploiting small charge differences. Using statistical design of experiments for elution conditions, a high-resolution cation exchange capture column was optimized for resolution and recovery. Further reduction of product-related species was achieved by evaluating a matrix of conditions for a ceramic hydroxyapatite column. The optimized fermentation process was transferred from the 2-L laboratory scale to the 100-L pilot scale and the purification process was scaled accordingly to process the fermentation harvest. The laboratory- and pilot-scale processes resulted in similar process recoveries of 60 and 65%, respectively, and in a product that was of equal quality and purity to that of small-scale development preparations. The parallel approach for up- and downstream development was paramount in achieving a robust and scalable clinical process. 相似文献
13.
Panda AK Ghorpade A Mukhopadhyay A Talwar GP Garg LC 《Biotechnology and bioengineering》1995,45(3):245-250
High cell density fermentation studies were performed to produce the B subunit of Escherichia coli heat-labile enterotoxin (LTB) from a Vibrio cholerae culture that carries a recombinant plasmid with an ampicillin resistance gene, tac promoter, and the gene encoding LTB. Upon induction with isopropyl-beta-D-thiogalactopyranoside (IPTG) the culture secreted the protein into the extracellular milieu. Fed-batch fermentation with stepwise addition of a total of 5 mM of IPTG during the active growth phase of the organism resulted in the production of 400 mg/L of LTB in 9 h and a cell optical density (OD) of 24. The LTB was purified to homogeneity with 70% recovery from the fermentation broth and was found to be chemically and biologically identical to the native protein by N-terminal amino acid sequencing and receptor binding assay. (c) 1995 John Wiley & Sons, Inc. 相似文献
14.
本文利用重组大肠杆菌以甘油为底物发酵合成3.羟基丙酸,考察了不同pH对3.羟基丙酸产量及菌体生长的影响,发现在pH6.5条件下,细胞比生长速率达到最大值,延迟期也相对较短;而pH7.0有利于3-羟基丙酸的合成,控制pH7.0可以使3-羟基丙酸产量达到7.39g/L。基于不同pH条件下对细胞比生长速率和3-羟基丙酸比生成速率的分析,提出3.羟基丙酸分批发酵过程中的pH控制策略,即在发酵过程前5h将pH控制在6.5,5h~15h控制pH为7.0,此时有利于细胞生长;而后在15h-25h控制pH为7.5,25h后控制pH为7.0,从而使细胞具有较高的3.羟基丙酸比合成速率。在此控制策略下经过34h发酵3-羟基丙酸的终产量达到8.76g/L,比pH7.0条件下的3-羟基丙酸产量提高了18.54%。 相似文献
15.
[目的]研究工程菌E.coli BL21(DE3)/pET28-dexYG产右旋糖酐蔗糖酶的纯化和酶学性质.[方法]工程菌经过IPTG诱导后生产含His-tag融合蛋白的右旋糖酐蔗糖酶,通过硫酸铵沉淀、Ni-NTA亲和层析纯化,得到纯度较高的酶蛋白,并对纯酶进行了酶学性质及动力学研究.[结果]经过SDS-PAGE测得该酶的分子量约为170 kDa,与理论推测值基本相同.以蔗糖为底物,酶促反应的最适温度为25~30℃,最适pH值为5.4,动力学常数Km值为10.43 mmol/L;酶活在pH 5.0~8.0较为稳定,在室温(25 ℃)保藏4天仍有59%的酶活力,4℃保存7周酶活力仅下降一半,但在35℃以上失活很快;Ca2 对催化作用有较大的促进,Mg2 有微弱的促进作用,K 对催化反应无影响,Cu2 的抑制作用最强.其他试剂对重组酶的活性有不同程度的影响,其中SDS抑制作用很强.[结论]研究为重组右旋糖酐蔗糖酶纯酶的获取、得到稳定性好、活性高的酶反应体系及利用该酶进行催化反应和工业化应用提供了重要参数. 相似文献
16.
Yeast extract (YE) is commonly used as a key component in the complex media for industrial fermentations. However, the lot-to-lot variation of this raw material frequently requires extensive "use testing" of many lots to identify only the few that support desired fermentation performance. Through extensive fermentation studies and chemical analyses, we have identified adenine and two metabolizable carbon sources, trehalose and lactate, as the principle components in YE that affect the production of a recombinant protein antigen by a yeast strain. Adenine is required for culture growth and the relationship between biomass and measured adenine can be expressed by a Michaelis-Menten model, while the slowly metabolized trehalose serves to maintain the energy supply to the continued antigen synthesis. The rapidly utilized lactate exerts an indirect positive effect by sparing some of the accumulated ethanol from being consumed for growth to being utilized in the product formation. The effects of these YE components are mutually dependent. Based on the database generated from 40 lots at laboratory scale, a relatively high level of carbon sources in YE (trehalose plus lactate, >9.5% w/w) and an intermediate level of adenine (0.14-0.24% w/w) appear to be the minimal requirement of a good lot for this recombinant yeast fermentation. Many poor lots were improved in lab fermenters by rational supplementation of trehalose, lactate, or adenine to compensate for their insufficiencies. At the large production scale, predictions based on adenine and trehalose/lactate contents in various YE lots used correlated reasonably well with culture growth and antigen yield, illustrating the feasibility of such a simple chemical/biochemical analysis as a rapid and reliable initial screening tool. Without incurring any compositional change to an established manufacturing medium, this study demonstrates an effective approach to achieve consistency in fermentations employing complex nutrients and to improve fermentation productivities supported by suboptimal lots of raw material. 相似文献
17.
A numerical method to process experimental data concerning plasmid stability of a recombinant bacteria during continuous cultures with nonselective media is proposed here. This method differs from previous ones in that it uses the derivatve form of the state equation of the Imanaka-Aiba model for recombinant cultures. The methodology proposed here allows one to estimate values for the two model parameters without forcing them to be constant. Until now, this could not be done using classical analytical techniques because these parameters have been considered invariable because of the integration used in the evaluation of the model. These parameters are (1) the difference in the specific growth rates between plasmid-carrying cells and plasmid-free cells (deltamu), and (2) the probability of plasmid loss by plasmid-containing cells (rho(r) mu(+)). The derivative technique used here is completed by mathematical treatments involving data filtering and smoothing. The values of the two parameters are in agreement with those already publised. The current technique does not impose preconditions and permit us to further study related phenomena. 相似文献
18.
P.R. Patnaik 《Biotechnology letters》2002,24(2):115-119
Fermentations utilizing genetically modified microbes require accurate monitoring and control. This is done through a control algorithm based on a process model; control usually involves continual measurements and manipulations of the substrate feed rate and its concentration. Since variations in the data, due to the limitations on measurements or external influences, affect the performance, it is useful to have a quick evaluation of these effects before sensitivities or control strategies are studied in detail. Condition numbers provide a convenient way to do this. They have been employed here for a continuous fermentation for -galactosidase production by Saccharomyces cerevisiae containing the plasmid pSXR125. When all recombinant cells have the same number of copies of the plasmid, a selective medium permits less precision in measurement and manipulation than a non-selective medium, but this is reversed when there are two sub-populations with different numbers of plasmids. The more stringent requirement for a selective medium in the latter case is, however, offset by its greater productivity. 相似文献
19.
Recombinant E. coli fermentations were observed to undergo regular, reproducible oscillations in oxygen uptake for several hours during a controlled fermentation process. Culture growth slowed during the period of oscillations, delaying induction of recombinant protein production. The oscillations were similar in 10-L and 1,000-L fermentors and also occurred with different feed control algorithms. Both observations support the hypothesis that the oscillations are metabolic in nature. Analysis of amino acid, ATP, and GTP pools suggests that the oscillations result from aberrant regulation of isoleucine biosynthesis leading to repeated starvation events in which protein synthesis and growth are impaired. Both a nutritional solution, isoleucine feeding, and a genetic solution, repair of an ilvG frameshift mutation in E. coli K-12 strains, were found to eliminate the oscillations, further supporting the proposed mechanism for the behavior. These results illustrate the interesting and complicated physiological behavior which can be displayed in metabolic networks and provide another example of surprising problems that can arise in growing recombinant organisms in fermentors. 相似文献
20.
The optimal temperature control policy to be followed in the operation of a two-stage fermentation system in which gene expression is induced by a temperature-sensitive gene switching system was studied. A genetically structured model was used to describe product formation, and kinetic equations based on experimental data were used to quantify the specific gene expression rate and parameters that affect plasmid instability. A constant temperature control policy and temperature profiling control policy including temperature cycling were studied and compared. Maximum average production rate was obtained from a temperature control policy in which the second stage was operated initially at about 40.5 degrees C and the temperature decreased slightly to a constant value at 40.0 degrees C. The maximum average production rate, which corresponds to the optimal temperature control policy, for an operation of 180 h was 29.7 units of protein (mg of cells)-1 h-1. 相似文献