首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater pollution by arsenic is a serious worldwide problem, especially in Asian countries. Inter-individual variation in arsenic metabolism has been reported and recent studies demonstrate that 287T allele in human arsenic (+3 oxidation state) methyltransferase (AS3MT) increase the percentage of monomethylated arsenic in urine. The objectives of the present study was to evaluate the ethnic difference in M287T (T/C) polymorphism in AS3MT among Japanese (n=1074), Koreans (n=435), Chinese (n=154), Mongolians (n=246), Uygurs (n=56), Tibetans (n=180), Tamangs (n=53), Tamils (n=58), Sinhalese (n=54), Turks (n=243), Ovambos (n=185), Ghanaians (n=121), Xhosas (n=101), and other four populations from previous studies. Of 17 populations, Xhosas had the highest 287T frequency (0.233). Other African and Caucasian populations had similar287T frequencies above 0.100 with the exception of the Ghanaians (0.071). On the other hand, the Asian populations had relatively lower 287T allele frequencies ranging from 0.000 to 0.041 than the Africans and Caucasians. Our findings indicate that genetic susceptibility to arsenic toxicity in Asian is different from Africans and Caucasians.  相似文献   

2.
3.
Cell Biology and Toxicology - The human enzyme As(III) S-adenosylmethionine methyltransferase (AS3MT) catalyzes arsenic biotransformations and is considered to contribute to arsenic-related...  相似文献   

4.

Background

DNA repair systems have a critical role in maintaining the genome integrity and stability. DNA repair gene polymorphisms may influence the capacity to repair DNA damage, and thus lead to an increased cancer susceptibility. X-ray repair cross-complementing groups 3 (XRCC3), a DNA repair gene, may be involved in acute myeloid leukemia susceptibility. The objective of the current study was to investigate the association of Thr241Met polymorphism of XRCC3 gene with the risk of acute myeloid leukemia (AML).

Methods

This study included 78 AML patients and 121 healthy individuals without cancer. We used polymerase chain reaction-restriction fragment length polymorphism assay to determine XRCC3 genotypes.

Results

The XRCC3 variant genotype (Thr/Met+Met/Met) was more frequent in AML patients than in healthy controls (OR = 2.76, 95% CI: 1.52-4.98, P = 0.001). Our study revealed a statistically significant association between variant genotype (Thr/Met+Met/Met) and AML de novo compared to secondary AML (P = 0.007). No significant associations were found between any genotype and age at diagnosis, number of white blood cells and subtype of AML. Overall survival of patients with Thr/Thr genotype was better than those of variant Thr/Met and Met/Met genotypes.

Conclusions

Our findings indicate that the XRCC3 Thr241Met polymorphism may be a genetic risk factor for AML, particularly in male patients with de novo AML from the central part of Romania.  相似文献   

5.
We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individuals without skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metabolites and SNPs. GSTO1 rs4925 homozygous wild type was significantly associated with higher monomethylarsonic acid (MMA) and dimethylarsinic acid urinary concentrations, whereas wild-type AS3MT rs11191439 had significantly lower levels of As(III) and MMA. Genetic polymorphisms GSTO and As3MT modify arsenic metabolism as evidenced by altered urinary arsenic excretion.  相似文献   

6.
The X-ray repair cross-complementing group 3 gene (XRCC3) belongs to a family of genes responsible for repairing DNA double-strand breaks caused by normal metabolic processes and exposure to ionizing radiation. Polymorphisms in DNA repair genes may alter an individual's capacity to repair damaged DNA and may lead to genetic instability and contribute to malignant transformation. We examined the role of a polymorphism in the XRCC3 gene (rs861529; codon 241: threonine to methionine change) in determining breast cancer risk in Thai women. The study population consisted of 507 breast cancer cases and 425 healthy women. The polymorphism was analysed by fluorescence-based melting curve analysis. The XRCC3 241Met allele was found to be uncommon in the Thai population (frequency 0.07 among cases and 0.05 among controls). Odds ratios (OR) adjusted for age, body mass index, age at menarche, family history of breast cancer, menopausal status, reproduction parameters, use of contraceptives, tobacco smoking, involuntary tobacco smoking, alcohol drinking, and education were calculated for the entire population as well as for pre- and postmenopausal women. There was a significant association between 241Met carrier status and breast cancer risk (OR 1.58, 95% confidence interval (CI) 1.02-2.44). Among postmenopausal women, a slightly higher OR (1.82, 95% CI 0.95-3.51) was found than among premenopausal women (OR 1.48, 95% CI 0.82-2.69). Our findings suggest that the XRCC3 Thr241Met polymorphism is likely to play a modifying role in the individual susceptibility to breast cancer among Thai women as already shown for women of European ancestry.  相似文献   

7.
A 18-year clinical follow-up period in a male patient with a germline TSH-R gene mutation (Met453Thr) is described. Nonautoimmune thyrotoxicosis was diagnosed at the age of 7 months. The patient had exophthalmus, failure to thrive, advanced bone age and no goiter. Long-term antithyroid drug treatment (ATD) was necessary during childhood. At the age of 7 years he developed a goiter. Subtotal thyroidectomy was performed at the age of 9 years, followed by repeated ablative radiotherapy at the age of 9.5-13 years due to a toxic multinodular goiter. After 13 years ATD could be discontinued and the patient was euthyroid until 16 years of age, where L-thyroxine substitution had to be started. The exophthalmus diminished, and had disappeared at the age of 18 years, when CT scan of the orbit was performed. Conclusion: TSH-R mutation must be considered in early nonautoimmune thyrotoxicosis. A very aggressive treatment strategy is necessary.  相似文献   

8.
A DNA variation in the coding region of the human cystatin C gene has been detected by direct sequencing. The polymorphism, a G/A transition, leads to an Ala/Thr variation in the penultimate amino acid of the signal peptide. The base substitution results in the loss of a SstII restriction site, thus allowing the design of a rapid polymerase chain reaction assay for analysis of this polymorphism in the population.  相似文献   

9.
Song X  Geng Z  Li X  Zhao Q  Hu X  Zhang X  Wang Z 《Biochimie》2011,93(2):369-375
Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes the methylation of inorganic arsenic (iAs) and plays important role in the detoxication of this metalloid. There are fourteen cysteine residues in the human AS3MT (hAS3MT), among which twelve are absolutely conserved; Cys334 and Cys360 are unique; Cys368 and Cys369 are identified as a CysCys pair. The roles of several conserved cysteine residues in rat AS3MT and hAS3MT have been reported. Herein, the other conserved cysteine residues (Cys72, Cys271, Cys375) and the unique ones (Cys334, Cys360) were systematically replaced by serine using site-directed mutagenesis to study their functions. The mutants were investigated for enzymatic activity, kinetics, thermal stability and secondary structures. Present results indicate that C72S is completely inactive in methylation of iAs and has distinct changes in the secondary structures; Cys72 might form a critical intramolecular disulfide bond with Cys250; Cys271 and Cys375 do not affect the activity and structure of the hAS3MT. However, the mutations of Cys334 and Cys360 can decrease the enzymatic turnovers and change the conformation of the hAS3MT. The kinetic data show that Cys271, Cys334, Cys360 and Cys375 are not involved in the SAM binding. Additionally, all these cysteine residues except Cys375 affect the thermotropic properties of the hAS3MT.  相似文献   

10.
Congenital erythropoietic porphyria (CEP) is an autosomal recessive inborn error of metabolism that results from the markedly deficient activity of uroporphyrinogen III synthase (UROS). We describe a 14-year-old girl with red urine since infancy, progressive blistering and scarring of the skin, and moderate hemolytic anemia. After years of skin damage, her face is mutilated; she has a bald patch on the scalp, hypertrichosis of the neck, areas of skin darkening, and limited joint movements of the hands. Total urine excretion and fecal total porphyrin were both markedly raised above normal levels. Sequencing of the UROS gene identified two mutations causing CEP (Cys73Arg, Thr228Met). The patient lesions are progressing. Bone marrow transplantation and/or gene therapy are proposed as the next steps in her treatment. In brief, we describe a CEP with confirmed two pathogenic mutations, severe phenotype and discuss the various treatment options available.  相似文献   

11.
The catalytic mechanism of the recombinant human arsenic (+3) methyltransferase (hAS3MT) was studied using kinetics, initial velocity and spectroscopy. The production and the distribution of methylated arsenicals changed with various concentrations of arsenite/S-adenosyl-l-methionine (SAM)/thiols, enzyme contents, and incubation times. These results suggest a sequential methylation of arsenite to monomethylated arsenicals (MMA) and dimethylated arsenicals (DMA). In addition, competition exists between the two reactions. hAS3MT showed the greatest activity at pH 8.5 with glutathione (GSH) as the reductant. This might indicate that a balance between the deprotonation and protonation of sulfhydryl groups is required. Initial velocity studies illuminate an ordered sequence for the binding of SAM and arsenite to the hAS3MT; while GSH should probably be placed either as the first reactant or as a reactant combining with the enzyme only after products have been released. The interactions between substrate/cofactors and the hAS3MT were first monitored by UV-visible and circular dichroism spectroscopy. It revealed that arsenite and SAM combined with the hAS3MT before reaction started; whereas, no interactions between GSH and the hAS3MT were detected. Integrating the results from kinetics, initial velocity and spectroscopy studies, an ordered mechanism are originally attained, with the SAM as the first reactant that adds to the hAS3MT and arsenite as the second one. Arsenite is successively methylated reductively, rather than a stepwise oxidative methylation. GSH should combine with the hAS3MT after the methylation to reduce the disulfide bond formed during the catalytic cycle in the hAS3MT to resume the active form of the enzyme.  相似文献   

12.
The metabolic syndrome (MetS) is a polygenic multifactorial metabolic disorder with strong socioeconomic influence. MetS has became a worldwide epidemic, that directly increases the risk of cardiovascular diseases and type 2 diabetes mellitus. The human apoE gene, coding Apolipoprotein E, has three common polymorphisms in human population: e2, e3 and e4, which are proved to be associated with impaired lipid metabolism. The contribution of apoE polymorphism to MetS disorders has not been investigated previously in Vojvodina Province, region with the highest number of obese people in Serbia. The aim of this study was to evaluate apoE gene polymorphism in relation to MetS disorders. The healthy control group of 30 individuals and 63 MetS patients were examined for apoE variants in relation to biochemical and anthropometric parameters. The genotypes were determined by PCR–RFLP. Regarding all parameters, significantly higher values were detected in MetS group compared to control. The MetS group of patients had significantly higher frequency of e4 allele. In addition, positive relation was revealed between e4 allele presence and all measured parameters. It was found that the e4 allele was related with a significantly increased OR of MetS disorders according to the International Diabetes Federation definition. These results suggested that e4 allele may act as a one of determinants for development of metabolic syndrome.  相似文献   

13.
14.
Due to increased interest in As(III) S-adenosylmethionine methyltransferase (AS3MT), a search for chemical probes that can help elucidate function was initiated. A homology model was built based on related enzymes, and virtual screening produced 426 potential hits. Evaluation of these compounds in a functional enzymatic assay revealed several modest inhibitors including an O-substituted 2-amino-3-cyano indole scaffold. Two iterations of near neighbor searches revealed compound 5 as a potent inhibitor of AS3MT with good selectivity over representative methyltransferases DOT1L and NSD2 as well as a representative set of diverse receptors. Compound 5 should prove to be a useful tool to investigate the role of AS3MT and a potential starting point for further optimization.  相似文献   

15.
16.
Behcet's disease (BD) is multisytemic vasculitis or chronic inflammation that may lead to various autoimmune and autoinflammatory syndromes. Exact etiopathogenesis of BD has not been clarified yet. Urotensin II (UTS-II) is predominantly a vasoactive peptide and Thr21Met polymorphism in UTS-II gene was proved to increasing in some autoimmune diseases. Considering these, our objective was to evaluate whether two UTS-II gene polymorphisms (Thr21Met and Ser89Asn) were responsible in genetic susceptibility to BD in a Turkish population. A total of 198 patients with BD and 275 healthy controls were enrolled. We analyzed the genotype and allele frequencies of two UTS-II gene polymorphisms, Thr21Met and Ser89Asn, in BD patients and in controls. We found that Thr21Met but not Ser89Asn polymorphisms of the UTS-II gene were markedly associated with the risk of developing BD (p < 0.0001), The Met21Met genotype was less common among BD patients (6.1% in patients vs. 17.1% in controls; p < 0.0001). There was also an increase in the 21Thr allele (54.8% in BD patients vs. 43.8% in controls) and a decrease in 21Met allele frequencies (45.2% in controls vs. 56.2% in patients) in the BD groups (p < 0.0044). To the best of our knowledge, for the first time in the literature, our study claims that there is an association between Thr21Met, and not between Ser89Asn polymorphisms in the UTS-II gene and BD. These results put a new player to the field of undiscovered pathogenesis of BD and hopefully provide new insights to the treatment options.  相似文献   

17.
18.
This report demonstrates that transition metal ions and selenite affect the arsenite methylation by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) in vitro. Co2+, Mn2+, and Zn2+ inhibited the arsenite methylation by hAS3MT in a concentration-dependent manner and the kinetics indicated Co2+ and Mn2+ to be mixed (competitive and non-competitive) inhibitors while Zn2+ to be a competitive inhibitor. However, only a high concentration of Fe2+ could restrain the methylation. UV-visible, CD and fluorescence spectroscopy were used to study the interactions between the metal ions above and hAS3MT. Further studies showed that neither superoxide anion nor hydrogen peroxide was involved in the transition metal ion or selenite inhibition of hAS3MT activity. The inhibition of arsenite methylating activity of hAS3MT by selenite was reversed by 2 mM DTT (dithiothreitol) but neither by cysteine nor by β-mercaptoethanol. Whereas, besides DTT, cysteine can also prevent the inhibition of hAS3MT activity by Co2+, Mn2+, and Zn2+. Free Cys residues were involved in the interactions of transition metal ions or selenite with hAS3MT. It is proposed that the inhibitory effect of the ions (Co2+, Mn2+, and Zn2+) or selenite on hAS3MT activity might be via the interactions of them with free Cys residues in hAS3MT to form inactive protein adducts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号