首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Padar (Stereospermum personatum, family Bignoniaceae) is a well-known medicinal tree. Its complete regeneration occurred through shoot bud culture in vitro. The seeds germinated sequentially on plastic trays and polyethylene bags for 21 days served as explants source. Nodal segments from the seedlings were established on MS medium supplemented with 4.44 μM BA, in which 86.6% nodes showed shoot bud elongation. Then, nodal segments from the developed shoots were cultured on MS medium with several BA concentrations; best shoot multiplication was obtained with 0.44 μM BA. In a second experiment where PVP was added to proliferation medium, nodal segments from developed shoots produced maximum 2.78 shoots per node. The nodal segments showed shoot multiplication up to seventh subculture on. Finally, shoots were rooted on MS medium with 2.46 μM IBA. The plants transferred to net pots containing coco-peat were acclimatized in green house, where more than 80% plants survived and grew normally.  相似文献   

2.
An efficient micropropagation protocol was developed for the medicinal plant Phyllanthus caroliniensis (Euphorbiaceae) using nodal segments for axillary shoot proliferation. Maximum multiplication (21–23 shoots per explant) was achieved on MS or AR media supplemented with either 5.0 μM BA, 1.25–5.0 μM kinetin or 2.5–5.0 μM 2iP. Rooting was achieved with 80–100% of the microshoots on MS medium without growth regulators, although 1.25 μM NAA and 1.25–5.0 μM IAA promoted significant increases in the number of roots per explant. Regenerated plants were successfully acclimatized and about 88% of plantlets survived under ex vitro conditions. Flowering was observed on in vitro grown plantlets and after 3–4 weeks of acclimatization. High frequency callus initiation and growth was achieved when nodal segment explants were inoculated in the vertical position on MS medium supplemented with 5.0 μM 2,4-D. Root cultures were successfully established on MS medium containing 1.1 μM NAA. The optimized micropropagation, callus and root culture protocols offer the possibility to use cell/root culture techniques for vegetative propagation and secondary metabolism studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary A viable protocol has been developed for direct and indirect shoot regeneration of Vernonia cinerea. To establish a stable and high-frequency plant regeneration system, leaf and stem explants were tested with different combinations of α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and benzylaminopurine (BA). Lateral buds on nodal explants grew into shoots within 2 wk of culture in Murashige and Skoog (MS) basal medium supplemented with 20.9 μM BA. Excision and culture of nodal segments from in vitro-raised shoots on fresh medium with the same concentration of BA facilitated development of more than 15 shoots per node. Similarly leaf, nodal, and internodal explants were cultured on MS basal medium supplemented with different concentrations of BA, NAA, and IAA either alone or in combinations for callus induction and organogenesis. Shoot buds and/or roots were regenerated on callus. Shoot buds formed multiple shoots within 4 wk after incubation in induction medium. Adventitious buds and shoots proliferated when callus was cut into pieces and subcultured on MS basal medium containing 20.9 μM BA and 5.3 μM NAA. This combination proved to be the best medium for enhanced adventitious shoot bud multiplication, generating a maximum of 50 shoots in 4 wk. This medium was also used successfully for shoot proliferation in liquid medium. Root formation was observed from callus induced in medium containing 8.05–13.4 μM NAA. Regenerated shoots exhibited flowering and root formation in MS basal medium without any growth regulators. Plantlets established in the field showed 85% survival and exhibited identical morphological characteristics as the donor plant.  相似文献   

4.
Summary Micropropagation of Scabiosa caucasica cv. Caucasica Blue was achieved by culturing, separating axillary and adventitious shoots, or node sectioning on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA). The highest frequency of adventitious shoots regenerated from nodal or internodal explants and leaf blade (with or without petiole) appeared to occur on MS medium with 4.4 and 18 μM BA, respectively. Addition of 0.19 or 1.9 μM α-naphthaleneacetic acid to the BA-containing medium promoted callus formation and reduced shoot organogenesis. During micropropagation, shoot nodal explants derived from in vitro shoots cultured on MS medium supplemented with 4.4 μM BA yielded 8.9 shoots per explant within 40 d after culture initiation.  相似文献   

5.
Multiple shoots were induced on stem segments of an 8-y-old plant of Metrosideros excelsa Sol ex Gaertn. “Parnel”. Axillary shoots produced on uncontaminated explants were excised, segmented, and recultured in the same medium to increase the stock of shoot cultures. The Murashige and Skoog (MS) medium, augmented with different concentrations of 2- isopenthenyladenine (2iP) and indole-3-acetic acid (IAA), either singly or in combinations, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment, equal molar concentrations of four cytokinins [2iP, kinetin, zeatin, and N 6-benzyladenine (BA)] in combination with equal molar concentrations of three auxins [IAA, α-naphthaleneacetic acid (NAA), and indole-3-butyric acid (IBA)] were tested for ability to induce axillary shoot development from single-node stem segments. The highest rate of axillary shoot proliferation was induced on MS agar medium supplemented with 1.96μM 2iP and 1.14μM IAA after 6 wk in culture. Different auxins (IAA, IBA, and NAA) were tested to determine the optimum conditions for in vitro rooting of microshoots. The best results were accomplished with IAA at 5.71μM (89% rooting) and with IBA at 2.85 or 5.71μM (86% and 86% rooting, respectively). Seventy and 90 percent of the microshoots were rooted ex vitro in bottom-heated bench (22 ± 2°C) after 2 and 4 wk, respectively. In vitro and ex vitro rooted plantlets were successfully established in soil.  相似文献   

6.
Multiple shoots were induced from nodal segments of mature trees of Pistacia vera L. on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BA). Maximum shoot production was obtained from shoot tips taken from in vitro proliferated shoots when cultured on solidified MS medium containing 8.8 μM BA. The multiplication rate was 20 microshoots per explant on the 30th day. Rooting of microshoots was achieved in MS medium supplemented with indole butyric acid (IBA). Rooted plantlets reassumed independent growth after a short period of acclimatisation. Stable regenerated plants were established in the greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
An efficient regeneration system for large-scale propagation of statice (Limonium altaica cv. Emille) was developed using leaves from mature plants. Leaf segments (5×5 mm sections) were cultured on Murashige and Skoog's medium supplemented with N6-benzyladenine (BA) and thidiazuron (TDZ) individually and in combination with indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (NAA). Prolific direct adventitious shoot regeneration occurred on most of the media. The best response in terms of frequency of shoot regeneration (99.5%) and number of shoots per explant (112 shoots per explant) was observed on medium supplemented with 2.85 μM IAA and 1.14 μM TDZ. The shoots rooted easily on half strength MS medium and MS medium with indole-3-butyric acid. In vitro propagated plants could be transferred to soil with survival rates of more than 95%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A protocol for in vitro propagation of Isodon wightii (Bentham) H. Hara from nodal segments was developed. Multiple shoots were successfully established on half strength MS medium supplemented with 4.4 μM BA. Enhancement of shoot multiplication and elongation was achieved on half strength MS medium supplemented with 4.4 μM BA and 1.4 μM GA3. The regenerated shoots were rooted successfully on half strength MS medium supplemented with 4.9 μM IBA. Acclimatization of in vitro rooted shoots was successful. The in vitro regenerated plants grew well in the greenhouse without any phenotypic changes.  相似文献   

9.
A method for the micropropagation of Lippia junelliana (Mold.) Tronc. from shoot tips or nodal segments was developed. Proliferating microshoot cultures were obtained by placing shoot tips or nodal segments on full strength Murashige and Skoog medium (MS) supplemented with 4.4 μM benzyladenine (BA) or 0.04 μM indolebutyric acid- (IBA) plus 4.4 μM BA. The rooting of shoots was better on full-strength MS medium without growth regulators. Rooted plantlets were successfully acclimatized to soil. The shoot cultures showed a lower essential oil accumulation in comparison with parent plants. Essential oil accumulation is closely related with growth and shows a negative correlation with shoot proliferation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   

11.
A plant regeneration protocol was developed for white ash (Fraxinus americana L.). Hypocotyls and cotyledons excised from embryos were cultured on Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (BA) plus thidiazuron (TDZ), and compared for organogenic potential. Sixty-six percent of hypocotyl segments and 10.4% of cotyledon segments produced adventitious shoots, with a mean number of adventitious shoots per explant of 3.5 ± 0.9 and 2.5 ± 1.5, respectively. The best regeneration medium (52% shoot formation; 47% shoot elongation) for hypocotyls was MS basal medium containing 22.2 μM BA plus 0.5 μM TDZ, producing a mean of 3.9 ± 0.4 adventitious shoots. Adventitious shoots were established as proliferating shoot cultures following transfer to MS medium with Gamborg B5 vitamins supplemented with 10 μM BA plus 10 μM TDZ. For in vitro rooting, woody plant medium with indole-3-acetic acid (IAA) at 0, 2.9, 5.7, or 8.6 μM in combination with 4.9 μM indole-3-butyric acid (IBA) was tested for a 5- or 10-d dark culture period, followed by culture under a 16-h photoperiod. The best rooting (78% to 81%) of in vitro shoots was obtained with a 5 d dark culture treatment on medium containing 2.9 or 5.7 μM IAA plus 4.9 μM IBA, with an average of 2.6 ± 0.4 roots per shoot. Rooted plants were successfully acclimatized to the greenhouse. This adventitious shoot regeneration and rooting protocol will be used as the basis for experimental studies to produce transgenic white ash with resistance to the emerald ash borer.  相似文献   

12.
An efficient regeneration protocol for rapid multiplication of Melia azedarach, an economically as well as medicinally important timber-yielding tree, was developed. Nearly 90% of the culture exhibited axillary bud sprouting and multiple shoot formation from nodal segments derived from 20-year-old candidate plus tree on Murashige and Skoog (MS) medium supplemented with 5 μM 6-benzyladenine (BA). The highest shoot regeneration frequency (92%), maximum number of multiple shoots (19.7 ± 0.31) as well as shoot length (4.9 ± 0.08 cm) was induced from nodal explants on MS medium amended with 5.0 μM BA, 0.5 μM indole-3-acetic acid (IAA) and 30 μM adenine sulfate (AdS). Addition of 250 mg l−1 ammonium sulphate, (NH4)2SO4, and 100 mg l−1 K2SO4, prevented defoliation and tip burning without affecting the number of shoots. The explant harvest period also influenced the bud break and shoot sprouting from nodal segments. Repeated subculturing of nodal explants on fresh MS medium containing lower concentration of BA (2.5 μM) along with IAA (0.5 μM), AdS (30 μM) and additives was found most suitable growth regulator regime for achieving 1.2-fold increase in shoot multiplication rate. The percentage of shoot multiplication as well as the number of shoots per node remained the same during first three subculture passages, afterwards a decline was recorded. About 90% of the in vitro regenerated shoots were successfully rooted ex vitro by giving a pulse treatment of 250 μM indole-3-butyric acid for 15 min, followed by their transfer to thermocol cups containing soilrite. The raised plantlets were successfully acclimatized first under culture room conditions, then to green house with 85% survival rate.  相似文献   

13.
Summary A protocol for micropropagation of plants via axillary bud proliferation from nodal explants of Terminalia bellirica Roxb. seedlings has been established. Explants were cultured on Murashige and Skoog medium with different concentrations of 6-benzyladenine (BA; 4.4, 8.9, 13.3, 17.8, or 22.2 μM) or kinetin (Kn; 4.6, 9.3. 14.0, 18.6, or 23.2 μM). Within the range evaluated, the medium containing 13.3 μM BA showed the highest shoot length (1.9=0.2 cm) in the primary culture. When separated and transferred to fresh subculture medium with lower levels of BA (2.2. 4.4, 6.6, or 8.9 μM) or Kn (2.3, 4.6, 6.9, or 9.3 μM), the nodal segments from individual regenerants (obtained initially from seedling nodes) showed efficient shoot induction at 4.4 μM BA. Rooting of the shoots was achieved under in vitro conditions on two media tested, i.e., modified Gamborg's (B5) medium or Woody Plant Medium, both supplemented with 4.9 μM indole-3-butyric acid. Regenerated plants were established in the greenhouse.  相似文献   

14.
Summary An efficient protocol for in vitro propagation of an aromatic and medicinal herb Ocimum basilicum L. (sweet basil) through axillary shoot proliferation from nodal explants, collected from field-grown plants, is described. High frequency bud break and maximum number of axillary shoot formation was induced in the nodal explants on Murashige and Skoog (1962) medium (MS) containing N6-benzyladenine (BA). The nodal explants required the presence of BA at a higher concentration (1.0 mg·l−1, 4.4 μM) at the initial stage of bud break; however, further growth and proliferation required transfer to a medium containing BA at a relatively low concentration (0.25 mg·gl−1, 1.1 μM). Gibberellic (GA3) at 0.4 mg·l−1 (1.2 μM) added to the medium along with BA (1.0 mg·l−1, 4.4 μM) markedly enhanced the frequency of bud break. The shoot clumps that were maintained on the proliferating medium for longer durations, developed inflorescences and flowered in vitro. The shoots formed in vitro were rooted on half-strength MS supplemented with 1.0 mg·l−1 (5.0 μM) indole-3-butyric acid (IBA). Rooted plantlets were successfully acclimated in vermi-compost inside a growth chamber and eventually established in soil. All regenerated plants were identical to the donor plants with respect to vegetative and floral morphology.  相似文献   

15.
Summary A protocol was developed for rapid clonal propagation of the important medicinal climber, Tinospora cordifolia, through in vitro culture of mature nodal explants. Shoots were initiated on both Murashige and Skoog (MS) medium and woody plant medium (WPM) supplemented with 2.32 μM kinetin (KIN). Of the two basal media tested, WPM was found to be superior to MS medium for the induction of multiple shoots. Among the cytokinins tested, N6-benzyladenine (BA) was more effective than KIN for axillary shoot proliferation. KIN was superior to BA in terms of shoot elongation. An average multiplication rate of 6.3 shoots per explant was obtained with WPM supplemented with 8.87 μM BA. Shoot clumps harvested from this medium were transferred to WPM supplemented with 2.22 μM BA and 4.65 μM KIN for shoot elongation. Elongated shoots were rooted in half-strength MS medium supplemented with 2.85 μM indole-3-acetic acid (IAA). Rooted plantlets were successfully transferred to sand and established with 80% survival.  相似文献   

16.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

17.
An efficient protocol is described for the rapid in vitro multiplication of an endangered medicinal plant, Tylophora indica (Burm. f.) Merrill, via enhanced axillary bud proliferation from nodal explants collected from young shoots of a two-year-old plant. The physiological effects of growth regulators [6-benzyladenine (BA), kinetin (Kin) thidiazuron (TDZ), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA)], ascorbic acid (AA), different strengths of Murashige and Skoog (MS) medium and various pH levels on in vitro morphogenesis were investigated. The highest number (8.6 ± 0.71) of shoots and the maximum average shoot length (5.2 ± 0.31 cm) were recorded on MS medium supplemented with 2.5 μM BA, 0.5 μM NAA and 100 mg/l AA at pH 5.8. Rooting was best achieved on half-strength MS medium augmented with 0.5 μM IBA. The plantlets regenerated in vitro with well-developed shoot and roots were successfully established in pots containing garden soil and grown in a greenhouse with a 90% survival rate. The regenerated plants did not show any immediate detectable phenotypic variation. The described method can be successfully employed for large-scale multiplication and long-term in vitro conservation of T. indica.  相似文献   

18.
Justicia gendarussa is a valuable medicinal plant and various parts of this plant are pharmaceutically used for the treatment of different diseases. In vitro regeneration of shoot buds was obtained from culture of nodal cuttings as well as shoot regeneration from callus. The nodal cuttings differed in shoot proliferation in terms of percentage of explants that responded and average shoot length with various concentrations (4.4, 8.9, 13.3, 17.7, 22.2 μM) of 6-benzyladenine (BA), kinetin (Kn) and thidiazuron. In all treatments, one shoot was invariably present. Optimum 87% of cultures responded with an average shoot length of 4.4 cm on Murashige and Skoog (MS) medium supplemented with 17.7 μM BA. Callus was induced from the mature leaf segments on MS medium supplemented with Kn (4.7, 13.9, 23.2 μM) alone or in combination with 2, 4-dichlorophenoxyacetic acid (2, 4-D; 2.3 μM, 4.5 μM). Optimum callus induction (78%) was obtained on MS medium supplemented with 14 μM Kn and 4.5 μM 2, 4-D. When the callus was subcultured on MS medium fortified with BA (8.9, 17.7, 26.6 μM) or Kn (9.3, 18.6, 27.9 μM) alone or in combination with α naphthalene acetic acid (NAA; 2.7, 5.4 μM), shoot regeneration was obtained. The highest response (92%) was observed on MS medium containing 17.7 μM BA and 5.4 μM NAA. On this medium, an average number of 12.2 shoots were obtained per responding callus. The shoots obtained from callus and nodal cuttings were rooted with a frequency of 73% on MS medium augmented with 9.8 μM indole-3-butyric acid. The rooted shoots were successfully transplanted to soil and sand mixture (1:1) with 90% survival rate. The protocol standardized for shoot proliferation and regeneration in J. gendarussa from nodal cuttings and leaf-derived callus is suitable for micropropagation and conservation of this essential medicinal plant.  相似文献   

19.
An efficient in vitro regeneration protocol was developed for medicinally important aromatic plant Anethum graveolens. Nodal segments were cultured onto Murashige and Skoog (MS) basal medium supplemented with different auxins and cytokinins singly as well as in combinations. The optimum callus induction (93.33 %) was obtained on medium fortified with 2.2 μM N6-benzyladenine (BA) and 0.21 μM α-naphthaleneacetic acid. The best shoot regeneration (85.7 %) with 12.86 shoots per explant was achieved in two weeks when callus was subcultured on MS medium amended with 2.2 μM BA and 1.85 μM kinetin. The average length of regenerated shoots varied from 3.15 to 4.8 cm. The rooting of regenerated shoots was nearly 100 % on ? MS augmented with 4.9 μM indolebutyric acid with a maximum root length of 5.1 cm. Plantlets were successfully acclimatized with 60 % survival rate. During organogenesis, catalase and ascorbate peroxidase activity increased while superoxid dismutase activity decreased. Clonal fidelity of in vitro raised plants has been checked by random amplified polymorphic DNA using 10 selected decamer primers. It has been found that regenerated plants are true to type plants.  相似文献   

20.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号