首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.  相似文献   

2.
Spatial and temporal control of ovine prion protein (Prnp) gene expression was achieved in mice using two transgenes: a Prnp minigene with tet-operator sequences inserted 5' to exon 1 and a mouse neurofilament genomic clone carrying the chimeric-repressor TRSID cDNA. In bi-transgenic mice, ovine PrP(C) expression could be reversibly controlled in neuronal cells by doxycycline treatment whereas it remains constant in other cell types. Overall, this model opens opportunities to assess the involvement of cell types in prion diseases and PrP physiological function. It demonstrates the potentiality of the TRSID-silencer to precisely control temporal and spatial gene expression in vivo.  相似文献   

3.
Drosophila have emerged as a model system to study mammalian neurodegenerative diseases. In the present study we have generated Drosophila transgenic for ovine PrP (prion protein) to begin to establish an invertebrate model of ovine prion disease. We generated Drosophila transgenic for polymorphic variants of ovine PrP by PhiC31 site-specific germ-line transformation under expression control by the bi-partite GAL4/UAS (upstream activating sequence) system. Site-specific transgene insertion in the fly genome allowed us to test the hypothesis that single amino acid codon changes in ovine PrP modulate prion protein levels and the phenotype of the fly when expressed in the Drosophila nervous system. The Arg(154) ovine PrP variants showed higher levels of PrP expression in neuronal cell bodies and insoluble PrP conformer than did His(154) variants. High levels of ovine PrP expression in Drosophila were associated with phenotypic effects, including reduced locomotor activity and decreased survival. Significantly, the present study highlights a critical role for helix-1 in the formation of distinct conformers of ovine PrP, since expression of His(154) variants were associated with decreased survival in the absence of high levels of PrP accumulation. Collectively, the present study shows that variants of the ovine PrP are associated with different spontaneous detrimental effects in ovine PrP transgenic Drosophila.  相似文献   

4.
Propagation of the scrapie isoform of the prion protein (PrP(Sc)) depends on the expression of endogenous cellular prion (PrP(C)). During oral infection, PrP(Sc) propagates, by conversion of the PrP(C) to PrP(Sc), from the gastrointestinal tract to the nervous system. Intestinal epithelium could serve as the primary site for PrP(C) conversion. To investigate PrP(C) sorting in epithelia cells, we have generated both a green fluorescent protein (EGFP) or hemagglutinin (HA) tagged human PrP(C) (hPrP(C)). Combined molecular, biochemical, and single living polarized cell imaging characterizations suggest that hPrP(C) is selectively targeted to the apical side of Madin-Darby canine kidney (MDCKII) and of intestinal epithelia (Caco2) cells.  相似文献   

5.
Prion diseases are fatal neurodegenerative disorders of animals and humans that are characterized by the conversion of the host-encoded prion protein (PrP) to an abnormal isoform. In several species, including humans, polymorphisms in the gene encoding the PrP protein tightly control susceptibility of individuals toward this disease. In the present study we show that Rov cells expressing an ovine PrP allele ((VRQ)PrP) associated with high susceptibility of sheep to scrapie were very sensitive to sheep prion transmission and replicated the agent to high titers. In contrast, we did not find any evidence of infection when Rov cells expressed similar levels of a PrP variant ((ARR)PrP) linked to resistance. Our data provide the first direct evidence that natural PrP polymorphisms may affect prion susceptibility by controlling prion replication at the cell level. The study of how PrP polymorphisms influence the genetic control of prion propagation in cultured Rov cells may help elucidate basic mechanisms of prion replication.  相似文献   

6.
A hallmark of prion diseases or transmissible spongiform encephalopaties is the conversion of the cellular prion protein (PrP(C)), expressed by the prion gene (prnp), into an abnormally folded isoform (PrP(Sc)) with amyloid-like features that causes scrapie in sheep among other diseases. prnp together with prnd (which encodes a prion-like protein designated as Doppel), and prnt (that encodes the prion protein testis specific - Prt) with sprn (shadow of prion protein gene, that encodes Shadoo or Sho) genes, constitute the "prion gene complex". Whereas a role for prnd in the proper functioning of male reproductive system has been confirmed, the function of prnt, a recently discovered prion family gene, comprises a conundrum leading to the assumption that ruminant prnt is a pseudogene with no protein expression. The main objective of the present study was to identify Prt localization in the ram reproductive system and simultaneously to elucidate if ovine prnt gene is transcribed into protein-coding RNA. Moreover, as Prt is a prnp-related protein, the amyloid propensity was also tested for ovine and caprine Prt. Recombinant Prt was used to immunize BALB/c mice, and the anti-Prt polyclonal antibody (APPA) immune response was evaluated by ELISA and Western Blot. When tested by indirect immunofluorescence, APPA showed high avidity to the ram sperm head apical ridge subdomain, before and after induced capacitation, but did not show the same behavior against goat spermatozoa, suggesting high antibody specificity against ovine-Prt. Prt was also found in the testis when assayed by immunohistochemistry during ram spermatogenesis, where spermatogonia, spermatocytes, spermatids and spermatozoa, stained positive. These observations strongly suggest ovine prnt to be a translated protein-coding gene, pointing to a role for Prt protein in the ram reproductive physiology. Besides, caprine Prt appears to exhibit a higher amyloid propensity than ovine Prt, mostly associated with its phenylalanine residue.  相似文献   

7.
Conversion of the cellular alpha-helical prion protein (PrP(C)) into a disease-associated isoform (PrP(Sc)) is central to the pathogenesis of prion diseases. Molecules targeting either normal or disease-associated isoforms may be of therapeutic interest, and the antibodies binding PrP(C) have been shown to inhibit prion accumulation in vitro. Here we investigate whether antibodies that additionally target disease-associated isoforms such as PrP(Sc) inhibit prion replication in ovine PrP-inducible scrapie-infected Rov cells. We conclude from these experiments that antibodies exclusively binding PrP(C) were relatively inefficient inhibitors of ScRov cell PrP(Sc) accumulation compared with antibodies that additionally targeted disease-associated PrP isoforms. Although the mechanism by which these monoclonal antibodies inhibit prion replication is unclear, some of the data suggest that antibodies might actively increase PrP(Sc) turnover. Thus antibodies that bind to both normal and disease-associated isoforms represent very promising anti-prion agents.  相似文献   

8.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

9.
Prion diseases are associated with accumulation of strain-dependent biochemically distinct, disease-related isoforms (PrP(Sc)) of host-encoded prion protein (PrP(C)). PrP(Sc) is characterised by increased beta-sheet content, detergent insolubility and protease resistance. Recombinant alpha-PrP adopts a PrP(C)-like conformation, while beta-PrP conformationally resembles PrP(Sc), to these we raised 81 monoclonal antibodies in Prnp(0/0) mice. The N-terminal residues 91-110 are highly immunogenic in beta-PrP-immunised mice and of (17/41) anti-beta-PrP antibodies that could be epitope-mapped, approximately 70%, recognised this segment. In contrast, only 3/40 anti-alpha-PrP antibodies could be mapped and none interacted with this region, instead recognising residues 131-150, 141-160 and 171-190. Native PrP(C) was recognised by both antibody groups, but only anti-beta-PrP antibodies directed to 91-110 residues recognised native PrP(Sc) with high affinity, where in addition, species heterogeneity was also evident. Within the six anti-beta-PrP antibodies studied, they all recognised PK-treated native human and mouse PrP(Sc), four failed to recognise PK-treated native bovine PrP(Sc), one of which also did not recognise native PK-treated ovine PrP(Sc), showing the epitope becomes exposed on unfolding and disaggregation. These results demonstrate strain-dependent variations in chain conformation and packing within the 91-110 region of PrP(Sc).  相似文献   

10.
The protease-resistant prion protein (PrP(res)) of a few natural scrapie isolates identified in sheep, reminiscent of the experimental isolate CH1641 derived from a British natural scrapie case, showed partial molecular similarities to ovine bovine spongiform encephalopathy (BSE). Recent discovery of an atypical form of BSE in cattle, L-type BSE or BASE, suggests that also this form of BSE might have been transmitted to sheep. We studied by Western blot the molecular features of PrP(res) in four "CH1641-like" natural scrapie isolates after transmission in an ovine transgenic model (TgOvPrP4), to see if "CH1641-like" isolates might be linked to L-type BSE. We found less diglycosylated PrP(res) than in classical BSE, but similar glycoform proportions and apparent molecular masses of the usual PrP(res) form (PrP(res) #1) to L-type BSE. However, the "CH1641-like" isolates differed from both L-type and classical BSE by an abundant, C-terminally cleaved PrP(res) product (PrP(res) #2) specifically recognised by a C-terminal antibody (SAF84). Differential immunoprecipitation of PrP(res) #1 and PrP(res) #2 resulted in enrichment in PrP(res) #2, and demonstrated the presence of mono- and diglycosylated PrP(res) products. PrP(res) #2 could not be obtained from several experimental scrapie sources (SSBP1, 79A, Chandler, C506M3) in TgOvPrP4 mice, but was identified in the 87V scrapie strain and, in lower and variable proportions, in 5 of 5 natural scrapie isolates with different molecular features to CH1641. PrP(res) #2 identification provides an additional method for the molecular discrimination of prion strains, and demonstrates differences between "CH1641-like" ovine scrapie and bovine L-type BSE transmitted in an ovine transgenic mouse model.  相似文献   

11.
Relatively limited information is available on the processing and function of the normal cellular prion protein, PrP(C). Here it is reported for the first time that PrP(C) undergoes a site-specific cleavage of the octapeptide repeat region of the amino terminus on exposure to reactive oxygen species. This cleavage was both copper- and pH-dependent and was retarded by the presence of other divalent metal ions. The oxidative state of the cell also decreased detection of full-length PrP(C) and increased detection of amino-terminally fragmented PrP(C) within cells. Such a post-translational modification has vast implications for PrP(C), in its processing, because such cleavage could alter further proteolysis, and in the formation of the scrapie isoform of the prion protein, PrP(Sc), because abnormal cleavage of PrP(Sc) occurs into the octapeptide repeat region.  相似文献   

12.
Prion diseases are characterised by the conversion of a cellular prion protein (PrP(C)) by its misfolded, hence pathogenic, isoform (PrP(Sc)). The efficiency of this transition depends on the molecular similarities between both interaction partners and on the intrinsic convertibility of PrP(C). Transgenic mice expressing chimeric murine/ovine PrP(C) (Tgmushp mice) are susceptible to BSE and/or scrapie prions of bovine or ovine origin while transgenic mice expressing similar murine/bovine PrP(C) chimera (Tgmubo mice) are essentially resistant. We have studied this phenomenon by cell-free conversion on procaryotically expressed chimeric PrP(C). Mouse passaged scrapie or BSE PrP(Sc) was used as a seed and the conversion reaction was carried out under semi-native conditions. The results obtained in this assay were similar to those of our in vivo experiments. Since mubo- and mushp-PrP(C) differ only at four amino acid positions (S96G, N142S, Y154H and Q185E), single or double point mutations of mushp-PrP(C) were examined in the cell-free conversion assay. While the scrapie Me7 prion induced conversion was largely reduced by the N142S and Q185E but not by the S96G and Y154H mutation, the BSE induced conversion was retained in all mutants. Newly formed PrP(res) exhibited strain specific characteristics, such as the localisation of the proteinase K cleavage site, even in the chimeric PrP(C) mutants. We therefore postulate that the efficiency of the conversion of chimeric PrP(C) depends on the amino acid sequence as well as on prion strain specific effects.  相似文献   

13.
The recent introduction of bank vole (Clethrionomys glareolus) as an additional laboratory animal for research on prion diseases revealed an important difference when compared to the mouse and the Syrian hamster, since bank voles show a high susceptibility to infection by brain homogenates from a wide range of diseased species such as sheep, goats, and humans. In this context, we determined the NMR structure of the C-terminal globular domain of the recombinant bank vole prion protein (bvPrP) [bvPrP(121-231)] at 20 °C. bvPrP(121-231) has the same overall architecture as other mammalian PrPs, with three α-helices and an antiparallel β-sheet, but it differs from PrP of the mouse and most other mammalian species in that the loop connecting the second β-strand and helix α2 is precisely defined at 20 °C. This is similar to the previously described structures of elk PrP and the designed mouse PrP (mPrP) variant mPrP[S170N,N174T](121-231), whereas Syrian hamster PrP displays a structure that is in-between these limiting cases. Studies with the newly designed variant mPrP[S170N](121-231), which contains the same loop sequence as bvPrP, now also showed that the single-amino-acid substitution S170N in mPrP is sufficient for obtaining a well-defined loop, thus providing the rationale for this local structural feature in bvPrP.  相似文献   

14.
Prion diseases form a group of neurodegenerative disorders with the unique feature of being transmissible. These diseases involve a pathogenic protein, called PrP(Sc) for the scrapie isoform of the cellular prion protein (PrP(C)) which is an abnormally-folded counterpart of PrP(C). Many questions remain unresolved concerning the function of PrP(C) and the mechanisms underlying prion replication, transmission and neurodegeneration. PrP(C) is a glycosyl-phosphatidylinositol-anchored glycoprotein expressed at the cell surface of neurons and other cell types. PrP(C) may be present as distinct isoforms depending on proteolytic processing (full length and truncated), topology(GPI-anchored, transmembrane or soluble) and glycosylation (non- mono- and di-glycosylated). The present review focuses on the implications of PrP(C) glycosylation as to the function of the normal protein, the cellular pathways of conversion into PrP(Sc), the diversity of prion strains and the related selective neuronal targeting.  相似文献   

15.
The existence of different strains of infectious agents involved in scrapie, a transmissible spongiform encephalopathy (TSE) of sheep and goats, remains poorly explained. These strains can, however, be differentiated by characteristics of the disease in mice and also by the molecular features of the protease-resistant prion protein (PrP(res)) that accumulates into the infected tissues. For further analysis, we first transmitted the disease from brain samples of TSE-infected sheep to ovine transgenic [Tg(OvPrP4)] and to wild-type (C57BL/6) mice. We show that, as in sheep, molecular differences of PrP(res) detected by Western blotting can differentiate, in both ovine transgenic and wild-type mice, infection by the bovine spongiform encephalopathy (BSE) agent from most scrapie sources. Similarities of an experimental scrapie isolate (CH1641) with BSE were also likewise found following transmission in ovine transgenic mice. Secondly, we transmitted the disease to ovine transgenic mice by inoculation of brain samples of wild-type mice infected with different experimental scrapie strains (C506M3, 87V, 79A, and Chandler) or with BSE. Features of these strains in ovine transgenic mice were reminiscent of those previously described for wild-type mice, by both ratios and by molecular masses of the different PrP(res) glycoforms. Moreover, these studies revealed the diversity of scrapie strains and their differences with BSE according to labeling by a monoclonal antibody (P4). These data, in an experimental model expressing the prion protein of the host of natural scrapie, further suggest a genuine diversity of TSE infectious agents and emphasize its linkage to the molecular features of the abnormal prion protein.  相似文献   

16.
The phenotype of human sporadic prion diseases is affected by patient genotype at codon 129 of the prion protein (PrP) gene, the site of a common methionine/valine polymorphism, and by the type of the scrapie PrP (PrP(Sc)), which likely reflects the prion strain. However, two distinct disease phenotypes, identified as sporadic Creutzfeldt-Jakob disease (M/M2 sCJD) and sporadic fatal insomnia (sFI), share methionine homozygosity at codon 129 and PrP(Sc) type 2. One-dimensional gel electrophoresis and immunoblotting reveal no difference between the M/M2 sCJD and sFI species of PrP(Sc) in gel mobility and glycoform ratio. In contrast, the two-dimensional immunoblot demonstrates that in M/M2 sCJD the full-length PrP(Sc) form is overrepresented and carries glycans that are different from those present in the PrP(Sc) of sFI. Because the altered glycans are detectable only in the PrP(Sc) and not in the normal or cellular PrP (PrP(C)), they are likely to result from preferential conversion to PrP(Sc) of rare PrP(C) glycoforms. This is the first evidence that a qualitative difference in glycans contributes to prion diversity.  相似文献   

17.
18.
Mice overexpressing the prion protein (PrP) sequence from various host species are widely used for measuring infectious titers in prion disease. However, the impact that the transgene expression level might have on the susceptibility to infection raises some concerns about the final biological relevance of these models. Here we report that endpoint titration of a sheep scrapie isolate in sheep and in mice overexpressing the ovine PrP results in similar estimates of the infectious titer.  相似文献   

19.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

20.
The events leading to the degradation of the endogenous PrP(C) (normal cellular prion protein) have been the subject of numerous studies. Two cleavage processes, α-cleavage and β-cleavage, are responsible for the main C- and N-terminal fragments produced from PrP(C). Both cleavage processes occur within the N-terminus of PrP(C), a region that is significant in terms of function. α-Cleavage, an enzymatic event that occurs at amino acid residues 110 and 111 on PrP(C), interferes with the conversion of PrP(C) into the prion disease-associated isoform, PrP(Sc) (abnormal disease-specific conformation of prion protein). This processing is seen as a positive event in terms of disease development. The study of β-cleavage has taken some surprising turns. β-Cleavage is brought about by ROS (reactive oxygen species). The C-terminal fragment produced, C2, may provide the seed for the abnormal conversion process, as it resembles in size the fragments isolated from prion-infected brains. There is, however, strong evidence that β-cleavage provides an essential process to reduce oxidative stress. β-Cleavage may act as a double-edged sword. By β-cleavage, PrP(C) may try to balance the ROS levels produced during prion infection, but the C2 produced may provide a PrP(Sc) seed that maintains the prion conversion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号