首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teneurins are a novel family of transmembrane proteins expressed during pattern formation and morphogenesis. Originally discovered as ten-m and ten-a in Drosophila, four vertebrate teneurins as well as a Caenorhabditis elegans homologue were identified. The conserved domain architecture of teneurins includes an intracellular domain containing polyproline motifs. The long extracellular domain consists of eight EGF-like repeats, a region of conserved cysteines and unique YD-repeats. Vertebrate teneurins are most prominently expressed in the developing central nervous system, but are also expressed in developing limbs. In C. elegans, RNAi experiments and studies of mutants reveal that teneurins are required during fundamental developmental processes like cell migration and axon pathfinding. Cell culture experiments suggest that the intracellular domain of teneurins translocates to the nucleus following release from the membrane by proteolytic processing. Interestingly, the human teneurin-1 gene is located on the X-chromosome in a region where several families with X-linked mental retardation are mapped.  相似文献   

2.
Teneurins are a novel family of transmembrane proteins conserved between invertebrates and vertebrates. There are two members in Drosophila, one in C. elegans and four members in mouse. Here, we describe the analysis of the genomic structure of the human teneurin-1 gene. The entire human teneurin-1 (TEN1) gene is contained in eight PAC clones representing part of the chromosomal locus Xq25. Interestingly, many X-linked mental retardation syndromes (XLMR) and non-specific mental retardation (MRX) are mapped to this region. The location of the human TEN1 together with the neuronal expression makes TEN1 a candidate gene for XLMR and MRX. We also identified large parts of the human teneurin-2 sequence on chromosome 5 and sections of human teneurin-4 at chromosomal position 11q14. Database searches resulted in the identification of ESTs encoding parts of all four human members of the teneurin family. Analysis of the genomic organization of the Drosophila ten-a gene revealed the presence of exons encoding a long form of ten-a, which can be aligned with all other teneurins known. Sequence comparison and phylogenetic trees of teneurins show that insects and vertebrates diverged before the teneurin ancestor was duplicated independently in the two phyla. This is supported by the presence of conserved intron positions between teneurin genes of man, Drosophila and C. elegans. It is therefore not possible to class any of the vertebrate teneurins with either Drosophila Ten-a or Ten-m. The C-terminal part of all teneurins harbours 26 repetitive sequence motifs termed YD-repeats. YD-repeats are most similar to the repeats encoded by the core of the rearrangement hot spot (rhs) elements of Escherichia coli. This makes the teneurin ancestor a candidate gene for the source of the rhs core acquired by horizontal gene transfer.  相似文献   

3.
Teneurins are type II transmembrane proteins expressed during pattern formation and neurogenesis with an intracellular domain that can be transported to the nucleus and an extracellular domain that can be shed into the extracellular milieu. In Drosophila melanogaster, Caenorhabditis elegans, and mouse the knockdown or knockout of teneurin expression can lead to abnormal patterning, defasciculation, and abnormal pathfinding of neurites, and the disruption of basement membranes. Here, we have identified and analyzed teneurins from a broad range of metazoan genomes for nuclear localization sequences, protein interaction domains, and furin cleavage sites and have cloned and sequenced the intracellular domains of human and avian teneurins to analyze alternative splicing. The basic organization of teneurins is highly conserved in Bilateria: all teneurins have epidermal growth factor (EGF) repeats, a cysteine-rich domain, and a large region identical in organization to the carboxy-half of prokaryotic YD-repeat proteins. Teneurins were not found in the genomes of sponges, cnidarians, or placozoa, but the choanoflagellate Monosiga brevicollis has a gene encoding a predicted teneurin with a transmembrane domain, EGF repeats, a cysteine-rich domain, and a region homologous to YD-repeat proteins. Further examination revealed that most of the extracellular domain of the M. brevicollis teneurin is encoded on a single huge 6,829-bp exon and that the cysteine-rich domain is similar to sequences found in an enzyme expressed by the diatom Phaeodactylum tricornutum. This leads us to suggest that teneurins are complex hybrid fusion proteins that evolved in a choanoflagellate via horizontal gene transfer from both a prokaryotic gene and a diatom or algal gene, perhaps to improve the capacity of the choanoflagellate to bind to its prokaryotic prey. As choanoflagellates are considered to be the closest living relatives of animals, the expression of a primitive teneurin by an ancestral choanoflagellate may have facilitated the evolution of multicellularity and complex histogenesis in metazoa.  相似文献   

4.
5.
Teneurins are type II transmembrane proteins that play important roles in pattern formation in Drosophila, axon fasciculation and organogenesis in Caenorhabidits elegans, and neuronal pathfinding in the visual system of the mouse. There is evidence that a peptide derived from a proteolytic event near the C-terminus of teneurins leads to formation of an active neuropeptide, while processing at and near the transmembrane domain leads to shedding of the extracellular domain into the extracellular matrix and the generation of an intracellular fragment that is transported to the nucleus. In vertebrates there are four teneurins. Here, we have studied the expression of teneurin-4 in the chicken embryo. An antiserum against part of the intracellular domain of teneurin-4 recognizes several low molecular weight bands on immunoblots of embryonic chicken brain homogenates, indicating that teneurin-4 is likely to be processed at one or more predicted proteolytic cleavage sites. Antisera against the EGF-like repeats of the extracellular domain label some mesenchyme in the early embryo, and near basement membranes this labeling partially overlaps with anti-laminin (gamma 1 chain) immunostaining. At embryonic day 7, anti-teneurin-4 labels bundles of axons in the nasal, but not temporal retina. Later in development, retinal expression switches so that teneurin-4 is found in the temporal, but not nasal, ganglion cell layer. Teneurin-4 immunolocalization was also compared with other teneurins in the developing limb, where each teneurin is expressed in distinctive regions. These patterns of expression suggest roles for teneurin-4 in patterning and neuronal pathfinding in the avian embryo.  相似文献   

6.
In animal development, numerous cell-cell interactions are mediated by the GLP-1/LIN-12/NOTCH family of transmembrane receptors. These proteins function in a signaling pathway that appears to be conserved from nematodes to humans. We show here that the aph-2 gene is a new component of the GLP-1 signaling pathway in the early Caenorhabditis elegans embryo, and that proteins with sequence similarity to the APH-2 protein are found in Drosophila and vertebrates. During the GLP-1-mediated cell interactions in the C. elegans embryo, APH-2 is associated with the cell surfaces of both the signaling, and the responding, blastomeres. Analysis of chimeric embryos that are composed of aph-2(+) and aph-2(-) blastomeres suggests that aph-2(+) function may be provided by either the signaling or responding blastomere.  相似文献   

7.
A conserved family of doublesex-related genes from fishes   总被引:2,自引:0,他引:2  
The sex-determining gene Mab-3 of C. elegans and the doublesex gene of Drosophila each contain a common DM domain and share a similar role. Human doublesex-related gene DMRT1 also encodes a conserved DM-related DNA-binding domain. We present here the amplification of a broad range of DM domain sequences from three fish species using degenerate PCR. Our results reveal unexpected complexity of the DM domain gene family in vertebrates.  相似文献   

8.
9.
10.
Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways.  相似文献   

11.
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.  相似文献   

12.
Vogel BE  Muriel JM  Dong C  Xu X 《Cell research》2006,16(11):872-878
Hemicentins are conserved extracellular matrix proteins discovered in Caenorhabditis elegans, with orthologs in all vertebrate species including human and mouse. Hemicentins share a single, highly conserved amino-terminal von Willebrand A domain, followed by a long (〉40) stretch of immunoglobulin repeats, multiple tandem epidermal growth factors and a fibulin-like carboxy-terminal module. C. elegans has a single hemicentin gene that has pleiotropic functions in transient cell contacts that are required for cell migration and basement membrane invasion and in stable contacts at hemidesmosome-mediated cell junctions and elastic fiber-like structures. Here, we summarize what is known about the function ofhemicentin in C. elegans and discuss implications for hemicentin function in other species.  相似文献   

13.
In vertebrates, striated muscle development depends on both the expression of members of the myogenic regulatory factor family (MRFs) and on extrinsic cellular cues, including Wnt signaling. The 81 embryonically born body wall muscle cells in C. elegans are comparable to the striated muscle of vertebrates. These muscle cells all express the gene hlh-1, encoding HLH-1 (CeMyoD) which is the only MRF-related factor in the nematode. However, genetic studies have shown that body wall muscle development occurs in the absence of HLH-1 activity, making the role of this factor in nematode myogenesis unclear. By ectopically expressing hlh-1 in early blastomeres of the C. elegans embryo, we show that CeMyoD is a bona fide MRF that can convert almost all cells to a muscle-like fate, regardless of their lineage of origin. The window during which ectopic HLH-1 can function is surprisingly broad, spanning the first 3 hours of development when cell lineages are normally established and non-muscle cell fate markers begin to be expressed. We have begun to explore the maternal factors controlling zygotic hlh-1 expression. We find that the Caudal-related homeobox factor PAL-1 can activate hlh-1 in blastomeres that either lack POP-1/TCF or that have down-regulated POP-1/TCF in response to Wnt/MAP kinase signaling. The potent myogenic activity of HLH-1 highlights the remarkable developmental plasticity of early C. elegans blastomeres and reveals the evolutionary conservation of MyoD function.  相似文献   

14.
The UNC-119 proteins, found in all metazoans examined, are highly conserved at both the sequence and functional levels. In the invertebrates Caenorhabditis elegans and Drosophila melanogaster, unc-119 genes are expressed pan-neurally. Loss of function of the unc-119 gene in C. elegans results in a disorganized neural architecture and paralysis. The function of UNC-119 proteins has been conserved throughout evolution, as transgenic expression of the human UNC119 gene in C. elegans unc-119 mutants restores a wild-type phenotype. However, the nature of the conserved molecular function of UNC-119 proteins is poorly understood. Although unc-119 genes are expressed throughout the nervous system of the worm and fly, the analysis of these genes in vertebrates has focused on their function in the photoreceptor cells of the retina. Here we report the characterization of an unc-119 homolog in the zebrafish. The Unc119 protein is expressed in various neural tissues in the developing zebrafish embryo and larva. Morpholino oligonucleotide (MO)-mediated knockdown of Unc119 protein results in a "curly tail down" phenotype. Examination of neural patterning demonstrates that these "curly tail down" zebrafish experience a constellation of neuronal defects similar to those seen in C. elegans unc-119 mutants: missing or misplaced cell bodies, process defasciculation, axon pathfinding errors, and aberrant axonal branching. These findings suggest that UNC-119 proteins may play an important role in the development and/or function of the vertebrate nervous system.  相似文献   

15.
Haag ES  Wang S  Kimble J 《Current biology : CB》2002,12(23):2035-2041
Unlike many features of metazoan development, sex determination is not widely conserved among phyla. However, the recent demonstration that one gene family controls sexual development in Drosophila, C. elegans, and vertebrates suggests that sex determination mechanisms may have evolved from a common pathway that has diverged radically since the Cambrian. Sex determination gene sequences often evolve quickly, but it is not known how this relates to higher-order pathways or what selective or neutral forces are driving it. In such a rapidly evolving developmental pathway, the fate of functionally linked genes is of particular interest. To investigate a pair of such genes, we cloned orthologs of the key C. elegans male-promoting gene fem-3 from two sister species, C. briggsae and C. remanei. We employed RNA interference to show that in all three species, the male-promoting function of fem-3 and its epistatic relationship with its female-promoting upstream repressor, tra-2, are conserved. Consistent with this, the FEM-3 protein interacts with TRA-2 in each species, but in a strictly species-specific manner. Because FEM-3 is the most divergent protein yet described in Caenorhabditis and the FEM-3 binding domain of TRA-2 is itself hypervariable, a key protein-protein interaction is rapidly evolving in concert. Extrapolation of this result to larger phylogenetic scales helps explain the dissimilarity of the sex determination systems across phyla.  相似文献   

16.
The DHHC domain: A new highly conserved cysteine-rich motif   总被引:5,自引:0,他引:5  
A unique clone from a human pancreatic cDNA library was isolated and sequenced. Examination of the deduced polypeptide sequence of the clone showed a new form of cysteine-rich domain that included a region with the form of a Cys4 zinc-finger-like metal binding site followed by a complex Cys-His region. Searches of the Swiss-Protein data bank found a similar 48-residue domain in fifteen open reading frames deduced from A. thaliana, C. elegans, S. cerevisiae and S. pombe genomic sequences. The high degree of conservation of this domain (13 absolutely conserved and 17 highly conserved positions) suggests that it has an important function in the cell, possibly related to protein-protein or protein-DNA interactions. The gene recognized by the clone is is localized to human chromosome 16, and is conserved in vertebrates. The 2 Kb message is expressed in various human fetal and adult tissues. An antibody made to a peptide sequence of the deduced protein showed reactivity in immunoblots of monkey lung and retinal subcellular fractions and immunohistochemically in late fetal mouse tissues and a limited number of adult mouse tissues, including pancreatic islets, Leydig cells of the testis, and the plexiform layers of the retina.  相似文献   

17.
Ju T  Zheng Q  Cummings RD 《Glycobiology》2006,16(10):947-958
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by the addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-alpha-galactose (UDP-Gal):GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here, we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by polymerase chain reaction using a C. elegans cDNA library as the template, contains 1170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has seven Cys residues in the lumenal domain including six conserved Cys residues in all orthologs. The Ce-T-synthase has four potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search, and it contains eight exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein (GFP) constructs shows that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc and might require invertebrate-specific factors for the formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and open new avenues to explore O-glycan function in this model organism.  相似文献   

18.
Dmrt基因在水生生物中的研究进展   总被引:1,自引:0,他引:1  
  相似文献   

19.
Phagocytosis of apoptotic cells is a key step in the completion of programmed cell death that occurs throughout life in multicellular organisms. The molecular events involved in clearance of apoptotic cells are just beginning to be elucidated. Recently, CED-6, an adapter protein involved in engulfment has been cloned in Caenorhabditis elegans and in humans. CED-6 is composed of a phosphotyrosine-binding (PTB) domain and a proline-rich C-terminal domain with no apparent catalytic domain. Since PTB domains, originally identified in Shc, mediate intracellular signaling downstream of cell surface receptors, CED-6 has also been proposed to mediate intracellular signals leading to engulfment. In this report, we demonstrate that CED-6 dimerizes through a leucine zipper domain that is immediately adjacent to the PTB domain. Several lines of evidence based on co-immunoprecipitation studies, yeast two-hybrid assays, and gel filtration studies suggest that CED-6 exists as a dimer in vivo. Through mutational analyses, we show that the leucine zipper is necessary and sufficient for CED-6 dimerization and that this dimerization is conserved among C. elegans, rodent, and human CED-6 proteins. We propose that dimerization may have unique implications for ligand binding via CED-6 and its function during the phagocytosis of apoptotic cells.  相似文献   

20.
Conservation and divergence of axon guidance mechanisms.   总被引:8,自引:0,他引:8  
Analysis of axon guidance mechanisms in vertebrates, Caenorhabditis elegans, and Drosophila melanogaster has led to the identification of several signaling pathways, many of which are strikingly conserved in function. Recent studies indicate that several axon guidance mechanisms are highly conserved in all animals, whereas others, though still conserved in a general sense, show strong evolutionary divergence at a detailed mechanistic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号