首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

2.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

3.
Cholic acid uptake was studied in isolated rat hepatocytes using a centrifugal filtration technique to allow rapid sampling. Hepatocytes were found to adsorb as well as to transport cholic acid. The adsorption was characterized by a capacity of 24 nmol X mg cell protein-1 and an association constant of 0.59 X 103 M-1. Cholic acid uptake was linear with respect to concentration at or below 10 degree C, suggesting a unsaturable uptake process which was considered to represent simple diffusion and is quantitated by a diffusion coefficient of 1.76 pmol cholic acid X min-1 X mg protein-1 X muM-1. Above 10 degrees C the uptake curve was biphasic. After subtracting the unsaturable component from uptake rates at higher temperatures, a curve showing saturable kinetics resulted. The apparent Km and V values at 37 degrees C were calculated to be 31muM and 0.8 nmol X min-1 X mg protein-1 respectively. This saturable uptake process was temperature-dependent with an activation energy of 13 kcal X mol-1 (5.44 X 104 J X mol-1) and was inhibited by oligomycin and KCN. Countertransport was demonstrated with cholic, taurocholic and chenodeoxycholic acids. The results suggest that cholic acid is transported by an energy-dependent carrier-mediated process in addition to simple diffusion by hepatocytes, and that the postulated carrier has affinity for other bile acids.  相似文献   

4.
The efflux of isoleucine in whole cells of Corynebacterium glutamicum was studied. The different amino acid fluxes across the plasma membrane were functionally discriminated into passive diffusion, carrier-mediated excretion, and carrier-mediated uptake. Detailed kinetic analysis was made possible by controlled variation of internal isoleucine from low concentrations to 100 mM by feeding with mixtures of isoleucine-containing peptides. Isoleucine diffusion was experimentally separated and proceeded with a first-order rate constant of 0.083 min-1 or 0.13 microliters.min-1.mg (dry mass)-1, which corresponds to a permeability of 2 x 10(-8) cm.s-1. Uptake of isoleucine was constant at a rate of 1.1 nmol.min-1.mg (dry mass)-1. Carrier-mediated isoleucine excretion was zero below a threshold of 8 mM cytosolic isoleucine. Above this level, a Michaelis-Menten-type kinetics was observed, with a Km of 21 mM (13 mM plus 8 mM threshold value) and a Vmax of 14.5 nmol.min-1.mg (dry mass)-1. The activity of the isoleucine excretion carrier depended on the presence of a membrane potential. Excretion was specific for L-isoleucine (and presumably L-leucine) and could be inhibited by SH reagents.  相似文献   

5.
The uptake of L-lysine was examined in isolated renal cortical tubule fragments from adult and 1-week-old dogs. Lysine uptake by adult tubules was initially more rapid than that by the immature tubules. This uptake by mature tubules reached a steady state after 30 min of incubation, while the newborn tubules still had not reached a steady state by 90 min of incubation. Because a steady state of lysine uptake was not attained with the immature tubules, their uptake of lysine exceeded that of the adult after 60 min of incubation. Kinetic studies revealed that lysine was taken up by one saturable transport system with a Km of 0.56 mM and Vmax of 6.18 mmol/liter intercellular fluid per 5 min in the adult and one saturable transport system in the 1-week-old with a Km of 0.38 mM and Vmax of 3.66 mmol/l intracellular fluid per 5 min. Lysine also entered the renal tubule cells in both age groups via a diffusional pathway with a kd of 0.35 min-1 in the adult and 0.30 min-1 in the newborn. Cystine competitively inhibited lysine uptake by adult dog tubules with a Ki of 0.61 mM. The other dibasic amino acids, ornithine and arginine, also inhibited lysine uptake in both the adult and the newborn.  相似文献   

6.
Two high-affinity K+ uptake systems, KtrI and KtrII, have been reported in Enterococcus hirae. A mutant, JEMK1, defective in these two systems did not grow at pH 10 in low-K+ medium (less than 1 mM K+), but grew well when supplemented with 10 mM KCl. In this mutant, we found an energy-dependent K+ uptake at pH 10 with a low affinity for K+ (Km of approximately 20 mM) and an extremely high rate [Vmax of 1.6 micromol x min(-1) (mg protein)(-1)]. Rb+ uptake [Km of approximately 40 mM and Vmax of 0.5 micromol x min(-1) (mg protein)(-1)], which was inhibited competitively by K+ and less prominently by Cs+, was also observed. The specificity of this transport is likely to be K+>Rb+>Cs+. This peculiar K+ transport plays a role as a salvage mechanism against defects in high-affinity systems in the K+ homeostasis of this bacterium.  相似文献   

7.
The uptake of methylamine as the sole nitrogen, but not carbon, source by Pseudomonas sp. strain MA was investigated. Under these growth conditions, a high-affinity, low-capacity uptake system was present having a Km of 16 microM and Vmax of 2 nmol.min-.mg (dry weight) of cells that was competitively inhibited by ammonium chloride. The transport system was induced by growth on succinate with methylamine as the sole nitrogen source.  相似文献   

8.
The active uptake system for glutamate in Corynebacterium glutamicum is inducible by growth on glutamate as sole energy and carbon source and is also susceptible to catabolite repression by glucose. The basic level of uptake activity is low in glucose-grown cells (1.5 nmol.mg dry mass-1.min-1), it is intermediate when acetate is the carbon source (3.8 nmol.mg dry mass-1.min-1) and becomes fully induced by glutamate (15 nmol.mg dry mass-1.min-1). In all cases the uptake has, except for different Vmax values, identical kinetic and energetic properties, and is characterized by a low apparent Km value of 0.5-1.3 microM and by high substrate specificity. The transported substrate species is the deprotonated form which can also be concluded from the extremely high pH optimum of transport above pH 9. Glutamate uptake in cells grown in media with low K+ concentration is not influenced by external Na+ but is drastically stimulated by addition of K+. Stimulation by K+ could be separated into two different mechanisms. (a) Addition of K+ increases the internal pH, thereby stimulating glutamate uptake which is regulated by the internal pH in C. glutamicum. The apparent pK of the internal 'pH switch' is 6.6; below this value, uptake of glutamate is inhibited. (b) Internal K+ also directly promotes glutamate uptake. Effective uptake of glutamate can be observed only when the cytosolic K+ concentration exceeds a threshold value of about 200 mM. Stimulation of glutamate uptake by external K+ is not due to functional coupling of K+ and glutamate transport but reveals the necessity to replenish the internal K+ pool.  相似文献   

9.
L-Phenylalanine was actively transported by conidia of Fusarium sulphurenum Schlect (isolate 1). Uptake was optimal at pH 7, 30 degrees C; respiration-dependent; and was unaffected by relatively high internal concentrations of phenylalanine. The Km for transport was 1-3 X 10(-5) M and the Vmax was 2.5-4 nmol/min per milligram dry weight. Phenylalanine is transported by a general transport system for basic and neutral amino acids. Sucrose repressed uptake of phenylalanine and this repression was largely negated by cycloheximide. Efflux of accumulated phenylalanine was influx-dependent; this transport system deteriorated slowly with aging of the conidial culture.  相似文献   

10.
Transport of methylamine by Pseudomonas sp. MA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Pseudomonas sp. MA grows on methylamines as a sole source of carbon, nitrogen, and energy. The transport of methylamine into the organism was investigated. It was found that this organism possesses an inducible transport system for methylamine having the following physical parameters: pH optimum, 7.2; temperature optimum, 30 to 35 degrees C; Km, 1 to 30 mM; Vmax, 90 to 120 nmol/min per mg (dry weight) of cells. Methylamine uptake was curtailed by azide, cyanide, and carbonyl cyanide-m-chlorophenylhydrazone; osmotic shock treatment reduced the uptake by 50%. The uptake was not effectively inhibited by ammonium ion, amino acids, or amides, but was competitively inhibited by short-chain alkylamines. Cells grown on succinate-ammonium chloride did not possess the transport system, but it could be induced in such cells by methylamine in 20 h. Cells grown with methylamine as a sole nitrogen, but not carbon, source transported methylamine at a reduced rate.  相似文献   

11.
Manganese transport in Brevibacterium ammoniagenes ATCC 6872.   总被引:1,自引:0,他引:1       下载免费PDF全文
Uptake of manganese by Brevibacterium ammoniagenes ATCC 6872 was energy dependent and obeyed saturation kinetics (Km = 0.65 microM; Vmax = 0.12 mumol/min per g [dry weight]). Uptake showed optima at 27 degrees C and pH 9.5. 54Mn2+ accumulated by the cells was released by treatment with toluene or by exchange for unlabeled manganese ions, via an energy-dependent process. Co2+, Fe2+, Cd2+, and Zn2+ inhibited manganese uptake. Inhibition by Cd2+ and Zn2+ was competitive (Ki = 0.15 microM Cd2+ and 1.2 microM Zn2+). Experiments with 65Zn2+ provided no evidence for Zn2+ uptake via the Mn2+ transport system.  相似文献   

12.
Cold-osmotic-shocked cells and spheroplasts of Saccharomyces cerevisiae (ATCC 9896) display a biotin uptake system similar to that observed in intact cells. 2-Mercaptoethanol was found to inhibit biotin transport. Cells repressed for biotin uptake by growth in excess biotin (25 ng/ml) possess an energy-dependent transport system that has a K(m) for biotin of 6.6 x 10(-7) M and a V(max) equal to 39 pmol per mg (dry weight) per min. A similar K(m) (6.4 x 10(-7) M) but a considerably higher V(max) (530 pmol per mg (dry weight) per min) was determined for biotin uptake by cells grown in sufficient biotin (0.25 ng/ml). The V(max) rates of biotin uptake by both repressed and derepressed cells were increased approximately 35-fold in the presence of glucose. These yeast cells appear to regulate their biotin uptake by two mechanisms. An exit system provides for immediate adjustments, whereas turnover of the transport system and repression of new synthesis establishes a slower adaptation to changes in the environment. Feedback inhibition was ruled out as a mechanism of regulation of transport.  相似文献   

13.
The uptake of C4 dicarboxylates by cells from exponential cultures of Rhodopseudomonas spheroides followed saturation kinetics at concentrations below 100 muM with Km values for succinate, malate, and fumarate of 2.7, 2.3, and 0.8, respectively. Corresponding Vmax values of 50, 52, and 67.5 nmol/min per mg of protein at 20 C were obtained. Each of these compounds interfered competitively with uptake of the others, and a common transport system appears to be involved. Fructose-grown cells took up C4 dicarboxylates only at very low rates, and pyruvate-grown cells took up C4 dicarboxylates at one-third the rates found with succinate-grown cultures. Malonate and maleate inhibited uptake less severely, and aspartate and alpha-ketoglutarate had no effect at 100-fold excess. Divalent metals stimulated uptake. Light or respiration was required for uptake, and entered materials were rapidly converted to other metabolities, notably amino acids. Pyruvate entry appeared to be mediated by several systems, of which only one could be resolved kinetically. This system had a Km of 13 muM and Vmax of 5.6 nmol/min per mg of protein at 20 C. A number of related mono- and dicarboxylates interfered with pyruvate uptake. The pyruvate uptake system was distinguishable from the C4 dicarboxylate system by the absence of divalent cation stimulation and by substrate and inhibitor specificity.  相似文献   

14.
Mechanisms regulating the energy-dependent calcium sequestering activity of liver microsomes were studied. The possibility for a physiologic mechanism capable of entrapping the transported Ca2+ was investigated. It was found that the addition of glucose 6-phosphate to the incubation system for MgATP-dependent microsomal calcium transport results in a marked stimulation of Ca2+ uptake. The uptake at 30 min is about 50% of that obtained with oxalate when the incubation is carried out at pH 6.8, which is the pH optimum for oxalate-stimulated calcium uptake. However, at physiological pH values (7.2-7.4), the glucose 6-phosphate-stimulated calcium uptake is maximal and equals that obtained with oxalate at pH 6.8. The Vmax of the glucose 6-phosphate-stimulated transport is 22.3 nmol of calcium/mg protein per min. The apparent Km for calcium calculated from total calcium concentrations is 31.9 microM. After the incubation of the system for MgATP-dependent microsomal calcium transport in the presence of glucose 6-phosphate, inorganic phosphorus and calcium are found in equal concentrations, on a molar base, in the recovered microsomal fraction. In the system for the glucose 6-phosphate-stimulated calcium uptake, glucose 6-phosphate is actively hydrolyzed by the glucose-6-phosphatase activity of liver microsomes. The latter activity is not influenced by concomitant calcium uptake. Calcium uptake is maximal when the concentration of glucose 6-phosphate in the system is 1-3 mM, which is much lower than that necessary to saturate glucose-6-phosphatase. These results are interpreted in the light of a possible cooperative activity between the energy-dependent calcium pump of liver microsomes and the glucose-6-phosphatase multicomponent system. The physiological implications of such a cooperation are discussed.  相似文献   

15.
The uptake and efflux of cyclic adenosine 3',5'-monophosphate (3',5'-cAMP) by Escherichia coli membrane vesicles were studied. Metabolic energy was not required for the uptake process and was found to actually decrease the amount of 3',5'-cAMP found in the vesicles. 3',5'-cAMP uptake exhibits saturation kinetics (Km = 10 mM, Vmax = 2.8 nmol/mg of protein per min) and was competitively inhibited by a number of 3',5'-cAMP analogs. The uptake of 3',5'-cAMP was found to be sharply affected by a membrane phase transition. The excretion of 3',5'-cAMP was studied by using everted membrane vesicles. Efflux in this system was dependent upon metabolic energy and was reduced or abolished by uncouplers. Different energy sources powered efflux at different rates, showing a relationship between the degree of membrane energization and rate of excretion of 3',5'-cAMP. The efflux process also displayed saturation kinetics (Km = 10.0 mM, Vmax = 0.98 nmol/mg of protein per min) and was competitively inhibited by the same 3',5'-cAMP analogs and to the same degree as was the uptake process. 3',5'-cAMP was found to be chemically unaltered by both the uptake and excretion processes. These data are interpreted as showing that the uptake and excretion of 3',5'-cAMP in E. coli membrane vesicles are carrier-mediated phenomena, possibly employing the same carrier system. Uptake is by facilitated diffusion whereas efflux is via an energy-dependent, active transport process. Evidence is presented showing that cells can regulate the number of 3',5'-cAMP transport carriers. The rate of 3',5'-cAMP excretion is possibly regulated by both the degree of membrane energization and the number of carriers present per cells.  相似文献   

16.
The transport of two different classes of organic anions (cholephilic dyes; the sulfobromophthalein, BSP, and bile acids; taurocholate, TC) was investigated in the HepG2 cell line. At 37 degrees C, BSP uptake was found to be biphasic with an apparent saturative curve in the concentration range between 0-6 microM followed by a linear component up to 18 microM. Kinetic constant determination showed an apparent Km of 26.6 +/- 3.1 microM and a Vmax of 5.64 +/- 0.82 nmol BSP.min-1.mg prot-1. At 4 degrees C, uptake was linear. By subtracting this latter component from the total uptake, a saturable, carrier mediated uptake was found with an apparent Km of 3.6 +/- 1.0 microM BSP and a Vmax of 0.37 +/- 0.04 nmol BSP.min-1.mg prot-1 (m +/- SEM, n = 6). These values were fully comparable with those found in freshly isolated male hepatocyte. Immunoblot analysis of HepG2 cell plasma membrane revealed the presence of bilitranslocase when tested against a monospecific antibody against this carrier molecule. On the contrary, TC uptake was linear up to concentration of 100 microM TC. No difference was observed in the presence or absence of Na+. Immunoprecipitation analysis showed the absence of the putative carrier of TC. These data indicate that the HepG2 cell line expresses a functioning bilitranslocase-mediated system. Conversely, carrier mediated bile acid uptake is absent in line with the lack of expression of the carrier protein.  相似文献   

17.
T Ishikawa 《FEBS letters》1989,246(1-2):177-180
Sarcolemmal vesicles prepared from rat heart exhibited ATP-dependent uptake of S-(2,4-dinitrophenyl)glutathione (DNP-SG), which obeyed Michaelis-Menten kinetics with an apparent Km of 21 microM for DNP-SG and a Vmax of 0.27 nmol.10 min-1.mg protein-1. Several model glutathione S-conjugates inhibited DNP-SG uptake, but leukotriene C4 inhibited uptake much more significantly even at lower concentrations (competitive inhibition, Ki = 1.5 microM). However, leukotrienes D4 and E4, which lack the gamma-glutamyl moiety, were less effective. The results suggest that the ATP-dependent transport system has a high affinity for leukotriene C4, and may be responsible for the translocation of this compound.  相似文献   

18.
Bacterial Salmonella enteritidis var. Issatchenko in media without exogenic energy source uptakes K+ in one step with Km 2.1 mM and Vmax 0.08 mM min-1/10(12) cells. This K+ uptake does not depend on pH and osmotic shock and is not inhibited by DCC. Endogenic energy source (glucose) leads to K+ uptake with Km 2.8 mM and Vmax 0.10 mM min-1/10(12) cells, and secretion of H+. The ratio of the DCC-sensitive fluxes of H+ to K+ equals 2. Arsenate and protonophores depress the K+ uptake. Valinomycin decreases the rate of K+ uptake. It is assumed that K+ uptake takes place via the Trk-like system, which works as a separate system as supercomplex with the H+-ATPase complex.  相似文献   

19.
The hepatic uptake of chenodeoxycholic acid, taurochenodeoxycholic acid, chenodeoxycholic acid 3-sulphate and taurochenodeoxycholate acid 3-sulphate by isolated rat hepatocytes was examined. Taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake occurred by a saturable, energy-dependent process while chenodeoxycholic acid uptake was predominantly non-saturable, possibly simple diffusion. Apparent Km (mumol/l) and Vmax (nmol/mg protein per min) values (mean +/- S.D.), respectively, were: chenodeoxycholic acid (saturable component), 33 +/- 6.4 and 4.8 +/- 0.6; taurochenodeoxycholic acid, 11.1 +/- 2.0 and 3.1 +/- 0.5; chenodeoxycholic acid 3-sulphate, 6.1 +/- 0.9 and 2.3 +/- 0.4; and taurochenodeoxycholic acid 3-sulphate, 5.0 +/- 0.7 and 0.9 +/- 0.15. Both conjugation with taurine and sulphation at the 3 position resulted in a reduction in the values of Km and Vmax. Uptake of each of the bile acids taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate was competitively inhibited by the other two, with taurochenodeoxycholic acid a potent inhibitor of both taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake. Other bile acids also inhibited. Uptake was inhibited by albumin in the order chenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid and was dependent on the extent of bile acid binding to albumin.  相似文献   

20.
A system for transport of coenzyme M, 2-mercaptoethanesulfonic acid (HS--CoM), in Methanobacterium ruminatium strain M1 required energy, showed saturation kinetics, and concentrated the coenzyme against a gradient. The process was sensitive to temperature and was maximally active at pH 7.1. Cells took up HS--CoM at a linear rate, with a Vmax of 312 pmol/min per mg (dry weight) and an apparent Km of 73 nM. An intracellular pool of up to 5 mM accumulated which was not exchangeable with the medium. Uptake required both hydrogen and carbon dioxide; it was inhibited by O2. Bromoethanesulfonic acid (BrCH2CH2SO3-), a potent inhibitor of methanogenesis in cell-free extracts, inhibited both uptake and methane production. Results of inhibitor studies with derivatives and analogs of the coenzyme showed that the specificity of the carrier is restricted to a limited range of thioether, thioester, and thiocarbonate derivatives. 2-(Methylthio)ethanesulfonic acid (CH3--S--CoM) showed an apparent Ki for HS--CoM uptake of 15 nM, being taken up itself with a Vmax of 320 pmol/min per mg (dry weight) and an apparent Km of 50 nM. An analysis of intracellular pools after HS--CoM uptake indicated that the predominant forms are a heterodisulfide of unknown composition and CH3--S--CoM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号