首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Madin-Darby canine kidney (MDCK) cells expressing constitutively active Rac1 (Rac1V12) accumulate a large central aggregate of membranes beneath the apical membrane that contains filamentous actin, Rac1V12, rab11, and the resident apical membrane protein GP-135. To examine the roles of Rac1 in membrane traffic and the formation of this aggregate, we analyzed endocytic and biosynthetic trafficking pathways in MDCK cells expressing Rac1V12 and dominant inactive Rac1 (Rac1N17). Rac1V12 expression decreased the rates of apical and basolateral endocytosis, whereas Rac1N17 expression increased those rates from both membrane domains. Basolateral-to-apical transcytosis of immunoglobulin A (IgA) (a ligand for the polymeric immunoglobulin receptor [pIgR]), apical recycling of pIgR-IgA, and accumulation of newly synthesized GP-135 at the apical plasma membrane were all decreased in cells expressing Rac1V12. These effects of Rac1V12 on trafficking pathways to the apical membrane were the result of the delivery and trapping of these proteins in the central aggregate. In contrast to abnormalities in apical trafficking events, basolateral recycling of transferrin, degradation of EGF internalized from the basolateral membrane, and delivery of newly synthesized pIgR from the Golgi to the basolateral membrane were all relatively unaffected by Rac1V12 expression. Rac1N17 expression had little or no effect on these postendocytic or biosynthetic trafficking pathways. These results show that in polarized MDCK cells activated Rac1 may regulate the rate of endocytosis from both membrane domains and that expression of dominant active Rac1V12 specifically alters postendocytic and biosynthetic membrane traffic directed to the apical, but not the basolateral, membrane.  相似文献   

2.
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolateral surface of MDCK cells IgA is found to accumulate under the apical plasma membrane in a compartment that is accessible to two apically added membrane markers: anti-secretory component Fab fragments, and avidin internalized from the biotinylated apical pole of the cell. This accumulation occurs in the presence of apical trypsin, which prevents internalization of the ligand from the apical cell surface. Using a modification of the diaminobenzidine density-shift assay, we estimate that approximately 80% of basolaterally internalized IgA resides in the apical endosomal compartment. In addition, approximately 50% of basolaterally internalized transferrin, a basolateral recycling protein, has access to this apical endosomal compartment and is efficiently recycled back to the basolateral surface. Microtubules are required for the organization of the apical endosomal compartment and it is dispersed in nocodazole-treated cells. Moreover, this compartment is largely inaccessible to fluid-phase markers added to either pole of the cell, and therefore seems analogous to the recycling endosome described in nonpolarized cells. We propose a model in which transcytosis is not a specialized pathway that uses unique transcytotic vesicles, but rather combines portions of pathways used by non- transcytosing molecules.  相似文献   

3.
Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.  相似文献   

4.
We investigate, in this study, the potential involvement of an acto-myosin-driven mechanism in endocytosis of polarized cells. We observed that depolymerization of actin filaments using latrunculin A decreases the rate of transferrin recycling to the basolateral plasma membrane of Caco-2 cells, and increases its delivery to the apical plasma membrane. To analyze whether a myosin was involved in endocytosis, we produced, in this polarized cell line, truncated, non-functional, brush border, myosin I proteins (BBMI) that we have previously demonstrated to have a dominant negative effect on endocytosis of unpolarized cells. These non-functional proteins affect the rate of transferrin recycling and the rate of transepithelial transport of dipeptidyl-peptidase IV from the basolateral plasma membrane to the apical plasma membrane. They modify the distribution of internalized endocytic tracers in apical multivesicular endosomes that are accessible to fluid phase tracers internalized from apical and basolateral plasma membrane domains. Altogether, these observations suggest that an acto-myosin-driven mechanism is involved in the trafficking of basolaterally internalized molecules to the apical plasma membrane.  相似文献   

5.
The Gram-negative pathogen Pseudomonas aeruginosa invades epithelial cells in vivo and in vitro . We have examined the pathway(s) by which epithelial cells internalize P. aeruginosa strain PA103 using Madin-Darby canine kidney (MDCK) cells. We have recently demonstrated that P. aeruginosa internalization occurs by an actin-dependent Toxin B-inhibited pathway which becomes downregulated as epithelial cells become polarized, suggesting that one or more of the Rho family GTPases is involved in bacterial internalization. Here, we demonstrate that activation of the Rho family GTPases by cytotoxic necrotizing factor 1 (CNF-1) stimulates P. aeruginosa internalization. Examination of the roles of the individual Rho family GTPases in internalization shows that expression of a constitutively active allele of RhoA (RhoAV14), but not of constitutively active Rac1 (Rac1V12) or Cdc42 (Cdc42V12), is sufficient to increase uptake of PA103 pscJ . This relative increase persists when bacterial infection is established at the basolateral surface of polarized cells, suggesting that the effect of RhoAV14 is not simply due to its known ability to disrupt tight junction integrity in polarized cells. RhoAV14-mediated stimulation of bacterial uptake is actin dependent as it is abrogated by exposure to latrunculin A. We also find that endogenous Rho GTP levels in epithelial cells are increased by infection with an internalized strain of P. aeruginosa; conversely, a poorly internalized isogenic strain expressing the bacterial anti-internalization protein ExoT causes decreased Rho GTP levels. Experimental inhibition of Rho, either by expressing dominant negative RhoAN19 or by inhibiting native Rho using a membrane permeable fusion construct of a Rho-specific inhibitor, C3 ADP-ribosyltransferase, does not inhibit PA103 pscJ internalization in MDCK or HeLa cells. Models consistent with these data are presented.  相似文献   

6.
The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin–Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.  相似文献   

7.
We have evaluated transcytotic routes in MDCK cells for their ability to generate a polarized surface distribution of trafficking proteins by following the intracellular sorting of transferrin receptors (TRs). We find that the selective basolateral expression of TRs is maintained in the face of extensive trafficking between the apical and basolateral surfaces. Biochemical studies of receptors loaded with tracer under conditions approaching steady state indicate that TRs internalized from the two surfaces are extensively colocalized within MDCK cells and that both populations of receptors are selectively delivered to the basolateral surface. Tailless TRs in which the cytoplasmic domain has been deleted display an unpolarized cell surface distribution and recycle in an unpolarized fashion. We show by EM that wild-type receptors internalized from each surface are colocalized within endosomal elements distributed throughout the cytoplasm. By preloading endosomal elements directly accessible from the basolateral surface with transferrin (Tf)-HRP, we show that apically internalized TRs rapidly enter the same compartment. We also show that both transcytosing (apically internalized) and recycling (basolaterally internalized) TRs are delivered to the basolateral border by a distinctive subset of exocytotic, 60-nm-diam vesicles. Together, the biochemical and morphological data show that apical and basolateral endosomes of MDCK cells are interconnected and contain a signal- dependent polarized sorting mechanism. We propose a dynamic model of polarized sorting in MDCK cells in which a single endosome-based, signal-dependent sorting step is sufficient to maintain the polarized phenotype.  相似文献   

8.
Polarized epithelial cells maintain the polarized distribution of basolateral and apical membrane proteins through a process of receptor-mediated endocytosis, sorting, and then recycling to the appropriate membrane domain. We have previously shown that the small GTP-binding proteins, Rab11a and Rab25, are associated with the apical recycling system of Madin-Darby canine kidney cells. Here we have utilized inducible expression of wild-type, dominant negative, and constitutively active mutants to directly compare the functions of Rab25 and Rab11a in postendocytic vesicular transport. We found that a Rab11a mutant deficient in GTP binding, Rab11aS25N, potently inhibited both transcytosis and apical recycling yet failed to inhibit transferrin recycling. Similarly, expression of either wild type Rab25 or the active mutant Rab25S21V inhibited both apical recycling and transcytosis of IgA by greater than 50% but had no effect on basolateral recycling of transferrin. Interestingly, the GTPase-deficient mutant Rab11aS20V inhibited basolateral to apical transcytosis of IgA, but had no effect on either apical or basolateral recycling. These results indicate that neither Rab11a nor Rab25 function in the basolateral recycling of transferrin in polarized Madin-Darby canine kidney cells cells, consistent with recent morphological observations by others. Thus, transferrin receptors must be recycled to the plasma membrane prior to sorting of apically directed cargoes into Rab11a/Rab25-positive apical recycling endosomes.  相似文献   

9.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin–Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.  相似文献   

10.
Apical and basolateral proteins are maintained within distinct membrane subdomains in polarized epithelial cells by biosynthetic and postendocytic sorting processes. Sorting of basolateral proteins in these processes has been well studied; however, the sorting signals and mechanisms that direct proteins to the apical surface are less well understood. We previously demonstrated that an N-glycan-dependent sorting signal directs the sialomucin endolyn to the apical surface in polarized Madin-Darby canine kidney cells. Terminal processing of a subset of endolyn's N-glycans is key for polarized biosynthetic delivery to the apical membrane. Endolyn is subsequently internalized, and via a cytoplasmic tyrosine-based sorting motif is targeted to lysosomes from where it constitutively cycles to the cell surface. Here, we examine the polarized sorting of endolyn along the postendocytic pathway in polarized cells. Our results suggest that similar N-glycan sorting determinants are required for apical delivery of endolyn along both the biosynthetic and the postendocytic pathways.  相似文献   

11.
《The Journal of cell biology》1990,111(6):2365-2373
A polarized cell, to maintain distinct basolateral and apical membrane domains, must tightly regulate vesicular traffic terminating at either membrane domain. In this study we have examined the extent to which microtubules regulate such traffic in polarized cells. Using the polymeric immunoglobulin receptor expressed in polarized MDCK cells, we have examined the effects of nocodazole, a microtubule-disrupting agent, on three pathways that deliver proteins to the apical surface and two pathways that deliver proteins to the basolateral surface. The biosynthetic and transcytotic pathways to the apical surface are dramatically altered by nocodazole in that a portion of the protein traffic on each of these two pathways is misdirected to the basolateral surface. The apical recycling pathway is slowed in the presence of nocodazole but targeting is not disrupted. In contrast, the biosynthetic and recycling pathways to the basolateral surface are less affected by nocodazole and therefore appear to be more resistant to microtubule disruption.  相似文献   

12.
Quantitative confocal microscopic analyses of living, polarized MDCK cells demonstrate different pH profiles for apical and basolateral endocytic pathways, despite a rapid and extensive intersection between the two. Three-dimensional characterizations of ligand trafficking demonstrate that the apical and basolateral endocytic pathways share early, acidic compartments distributed throughout the medial regions of the cell. Polar sorting for both pathways occurs in these common endosomes as IgA is sorted from transferrin to alkaline transcytotic vesicles. While transferrin is directly recycled from the common endosomes, IgA is transported to a downstream apical compartment that is nearly neutral in pH. By several criteria this compartment appears to be equivalent to the previously described apical recycling endosome. The functional significance of the abrupt increase in lumenal pH that accompanies IgA sorting is not clear, as disrupting endosome acidification has no effect on polar sorting. These studies provide the first detailed characterizations of endosome acidification in intact polarized cells and clarify the relationship between the apical and basolateral endocytic itineraries of polarized MDCK cells. The extensive mixing of apical and basolateral pathways underscores the importance of endocytic sorting in maintaining the polarity of the plasma membrane of MDCK cells.  相似文献   

13.
Differential microtubule requirements for transcytosis in MDCK cells.   总被引:31,自引:2,他引:29  
W Hunziker  P Mle    I Mellman 《The EMBO journal》1990,9(11):3515-3525
Given the role of microtubules in directing the transport of many intracellular organelles, we investigated whether intact microtubules were also required for transcytosis across epithelia. Using polarized MDCK cells expressing receptors for the Fc domain of IgG (FcRII-B2) or polymeric immunoglobulin (pIg-R), we examined the involvement of microtubules in apical to basolateral and basolateral to apical transcytosis, respectively. While depolymerization of microtubules with nocodozole had no effect on apical to basolateral transcytosis via FcR, basolateral to apical transcytosis of dimeric IgA via pIg-R was almost completely blocked. Inhibition due to nocodozole was selective for basolateral to apical transcytosis, since neither endocytosis nor receptor recycling was significantly affected at either plasma membrane domain. As shown by confocal microscopy, the block in transcytosis was due to the inability of MDCK cells to translocate IgA-containing vesicles from the basolateral to the apical cytoplasm in the absence of an intact microtubule network. The nocodazole sensitive step could be partially by-passed, however, by allowing cells to internalize IgA at 17 degrees C prior to nocodazole treatment. Although incubation at 17 degrees C blocked release of IgA into the apical medium, it did not prevent translocation of IgA-containing vesicles to the apical cytoplasm. Thus, receptor-mediated transcytosis in opposite directions exhibits distinct requirements for microtubules, a feature which reflects the spatial organization of MDCK cells.  相似文献   

14.
The effects of brefeldin A (BFA) on transferrin (Tf) transcellular transport, Tf receptor (TfR) distribution, and TfR-mediated endocytosis in filter-grown Madin-Darby canine kidney (MDCK) cells were studied. BFA (1.6 micrograms/ml) markedly enhanced the transcytosis of 125I-labeled Tf (125I-Tf) in both apical-to-basal and basal-to-apical directions; yet, BFA did not enhance the transcytosis of either native horseradish peroxidase (HRP) or membrane-bound HRP-poly(L-lysine) conjugates. Furthermore, this enhanced transcytosis of 125I-Tf was abolished either by competition with excess unlabeled Tf or by incubation at temperatures less than or equal to 25 degrees C. In addition, BFA treatment to MDCK cells: (a) increased 125I-Tf specific binding to the apical membrane and decreased 125I-Tf specific binding to the basal membrane; (b) decreased TfR recycling at the basolateral membrane; (c) altered the apical/basolateral distribution of TfRs in favor of the apical side; and (d) markedly increased 59Fe extraction, but not transcytosis, from apically endocytosed 59Fe-loaded Tf. These effects are consistent with a model in which BFA alters the traffic pattern of internalized Tf by decreasing basolateral TfR recycling, while diverting the nonrecycled fraction to the apical side of the cell. Our results indicate that, unlike the reported inhibition of polymeric IgA transcytosis (Hunziker, W., Whitney, J. A., and Mellman, I. (1991) Cell 67, 617-627), BFA can enhance the transcytosis of Tf in MDCK cells. Thus, by altering the intracellular traffic of ligand-receptor complexes, BFA can elicit either a decrease or an increase in transcytosis depending on the nature of the intracellular receptor processing.  相似文献   

15.
In cells tested so far endocytosis seems to be dependent on N-ethylmaleimide (NEM)-sensitive proteins, and treatment with NEM results in a complete block of endocytosis. We here demonstrate that treatment of polarized MDCK I cells with NEM strongly increased endocytosis of ricin and horseradish peroxidase at the apical side, and electron microscopy revealed NEM-induced formation of large macropinosomes at the apical pole. The NEM-stimulated apical endocytosis seemed to involve phosphatidylinositol-3 kinase, protein kinase C and phospholipase D and it was dependent on ATP. Moreover, in contrast to endocytosis in nonpolarized cells ricin endocytosis at the basolateral side continued in the presence of NEM whereas endocytosis of transferrin was blocked. Furthermore, recycling of ricin endocytosed in the absence of NEM was not inhibited on either side upon addition of NEM demonstrating the existence of a NEM-resistant fusion machinery. The results suggest that the fusogenic property of both the apical and the basolateral plasma membrane of MDCK cells differs from that typically observed in cells unable to polarize.  相似文献   

16.
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.  相似文献   

17.
Myosin Vb Is Associated with Plasma Membrane Recycling Systems   总被引:14,自引:0,他引:14       下载免费PDF全文
Myosin Va is associated with discrete vesicle populations in a number of cell types, but little is known of the function of myosin Vb. Yeast two-hybrid screening of a rabbit parietal cell cDNA library with dominant active Rab11a (Rab11aS20V) identified myosin Vb as an interacting protein for Rab11a, a marker for plasma membrane recycling systems. The isolated clone, corresponding to the carboxyl terminal 60 kDa of the myosin Vb tail, interacted with all members of the Rab11 family (Rab11a, Rab11b, and Rab25). GFP-myosin Vb and endogenous myosin Vb immunoreactivity codistributed with Rab11a in HeLa and Madin-Darby canine kidney (MDCK) cells. As with Rab11a in MDCK cells, the myosin Vb immunoreactivity was dispersed with nocodazole treatment and relocated to the apical corners of cells with taxol treatment. A green fluorescent protein (GFP)-myosin Vb tail chimera overexpressed in HeLa cells retarded transferrin recycling and caused accumulation of transferrin and the transferrin receptor in pericentrosomal vesicles. Expression of the myosin Vb tail chimera in polarized MDCK cells stably expressing the polymeric IgA receptor caused accumulation of basolaterally endocytosed polymeric IgA and the polymeric IgA receptor in the pericentrosomal region. The myosin Vb tail had no effects on transferrin trafficking in polarized MDCK cells. The GFP-myosin Va tail did not colocalize with Rab11a and had no effects on recycling system vesicle distribution in either HeLa or MDCK cells. The results indicate myosin Vb is associated with the plasma membrane recycling system in nonpolarized cells and the apical recycling system in polarized cells. The dominant negative effects of the myosin Vb tail chimera indicate that this unconventional myosin is required for transit out of plasma membrane recycling systems.  相似文献   

18.
Rab10, a protein originally isolated from Madin-Darby Canine Kidney (MDCK) epithelial cells, belongs to a family of Rab proteins that includes Rab8 and Rab13. Although both Rab8 and Rab13 have been found to mediate polarized membrane transport, the function of Rab10 in mammalian cells has not yet been established. We have used quantitative confocal microscopy of polarized MDCK cells expressing GFP chimeras of wild-type and mutant forms of Rab10 to analyze the function of Rab10 in polarized cells. These studies demonstrate that Rab10 is specifically associated with the common endosomes of MDCK cells, accessible to endocytic probes internalized from either the apical or basolateral plasma membrane domains. Expression of mutant Rab10 defective for either GTP hydrolysis or GTP binding increased recycling from early compartments on the basolateral endocytic pathway without affecting recycling from later compartments or the apical recycling pathway. These results suggest that Rab10 mediates transport from basolateral sorting endosomes to common endosomes.  相似文献   

19.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

20.
Polyphosphoinositides regulate numerous steps in membrane transport. The levels of individual phosphatidylinositols are controlled by specific lipid kinases, whose activities and localization are in turn regulated by a variety of effectors. Here we have examined the effect of overexpression of frequenin, a modulator of phosphatidylinositol 4-kinase activity, on biosynthetic and postendocytic traffic in polarized Madin-Darby canine kidney cells. Endogenous frequenin was identified in these cells by polymerase chain reaction, Western blotting, and indirect immunofluorescence. Adenoviral-mediated overexpression of frequenin had no effect on early Golgi transport of membrane proteins, as assessed by acquisition of resistance to endoglycosidase H. However, delivery of newly synthesized influenza hemagglutinin from the trans-Golgi network to the apical cell surface was severely inhibited in cells overexpressing frequenin, whereas basolateral delivery of the polymeric immunoglobulin receptor was unaffected. Overexpression of frequenin did not affect postendocytic trafficking steps including apical and basolateral recycling and basal-to-apical transcytosis. We conclude that frequenin, and by inference, phosphatidylinositol 4-kinase, plays an important and selective role in apical delivery in polarized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号