首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vaccines capable of eliciting long-term T cell immunity are required for combating many diseases. Live vectors can be unsafe whereas subunit vaccines often lack potency. We previously reported induction of CD8(+) T cells to Ag entrapped in archaeal glycerolipid vesicles (archaeosomes). In this study, we evaluated the priming, phenotype, and functionality of the CD8(+) T cells induced after immunization of mice with OVA-Methanobrevibacter smithii archaeosomes (MS-OVA). A single injection of MS-OVA evoked a profound primary response but the numbers of H-2K(b)OVA(257-264)-specific CD8(+) T cells declined by 14-21 days, and <1% of primarily central phenotype (CD44(high)CD62L(high)) cells persisted. A booster injection of MS-OVA at 3-11 wk promoted massive clonal expansion and a peak effector response of approximately 20% splenic/blood OVA(257-264)-specific CD8(+) T cells. Furthermore, contraction was protracted and the memory pool (IL-7Ralpha(high)) of approximately 5% included effector (CD44(high)CD62L(low)) and central (CD44(high)CD62L(high)) phenotype cells. Recall response was observed even at >300 days. CFSE-labeled naive OT-1 (OVA(257-264) TCR transgenic) cells transferred into MS-OVA-immunized recipients cycled profoundly (>90%) within the first week of immunization indicating potent Ag presentation. Moreover, approximately 25% cycling of Ag-specific cells was seen for >50 days, suggesting an Ag depot. In vivo, CD8(+) T cells evoked by MS-OVA killed >80% of specific targets, even at day 180. MS-OVA induced responses similar in magnitude to Listeria monocytogenes-OVA, a potent live vector. Furthermore, protective CD8(+) T cells were induced in TLR2-deficient mice, suggesting nonengagement of TLR2 by archaeal lipids. Thus, an archaeosome adjuvant vaccine represents an alternative to live vectors for inducing CD8(+) T cell memory.  相似文献   

2.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

3.
4.
Expression of IL-7Ralpha (CD127) has been suggested as a major determinant in the survival of memory T cell precursors. We investigated whether constitutive expression of IL-7Ralpha on T cells increased expansion and/or decreased contraction of endogenous Ag-specific CD4 and CD8 T cells following infection with Listeria monocytogenes. The results indicate that constitutive expression of IL-7Ralpha alone was not enough to impart an expansion or survival advantage to CD8 T cells responding to infection, and did not increase memory CD8 T cell numbers over those observed in wild-type controls. Constitutive expression of IL-7Ralpha did allow for slightly prolonged expansion of Ag-specific CD4 T cells; however, it did not alter the contraction phase or protect against the waning of memory T cell numbers at later times after infection. Memory CD4 and CD8 T cells generated in IL-7Ralpha transgenic mice expanded similarly to wild-type T cells after secondary infection, and immunized IL-7Ralpha transgenic mice were fully protected against lethal bacterial challenge demonstrating that constitutive expression of IL-7Ralpha does not impair, or markedly improve memory/secondary effector T cell function. These results indicate that expression of IL-7Ralpha alone does not support increased survival of effector Ag-specific CD4 or CD8 T cells into the memory phase following bacterial infection.  相似文献   

5.
Graft-vs-host disease (GVHD) is caused by a donor T cell anti-host reaction that evolves over several weeks to months, suggesting a requirement for persistent alloreactive T cells. Using the C3H.SW anti-C57BL/6 (B6) mouse model of human GVHD directed against minor histocompatibility Ags, we found that donor CD8(+) T cells secreting high levels of IFN-gamma in GVHD B6 mice receiving C3H.SW naive CD8(+) T cells peaked by day 14, declined by day 28 after transplantation, and persisted thereafter, corresponding to the kinetics of a memory T cell response. Donor CD8(+) T cells recovered on day 42 after allogeneic bone marrow transplantation expressed the phenotype of CD44(high)CD122(high)CD25(low), were able to homeostatically survive in response to IL-2, IL-7, and IL-15 and rapidly proliferated upon restimulation with host dendritic cells. Both allogeneic effector memory (CD44(high)CD62L(low)) and central memory (CD44(high)CD62L(high)) CD8(+) T cells were identified in B6 mice with ongoing GVHD, with effector memory CD8(+) T cells as the dominant (>80%) population. Administration of these allogeneic memory CD8(+) T cells into secondary B6 recipients caused virulent GVHD. A similar allogeneic memory CD4(+) T cell population with the ability to mediate persistent GVHD was also identified in BALB/b mice receiving minor histocompatibility Ag-mismatched B6 T cell-replete bone marrow transplantation. These results indicate that allogeneic memory T cells are generated in vivo during GVH reactions and are able to cause GVHD, resulting in persistent host tissue injury. Thus, in vivo blockade of both alloreactive effector and memory T cell-mediated host tissue injury may prove to be valuable for GVHD prevention and treatment.  相似文献   

6.
Infection with Listeria monocytogenes elicits expansion in numbers of Ag-specific CD8+ T cells, which then undergo programmed contraction. The remaining cells undergo further phenotypic and functional changes with time, eventually attaining the qualities of memory CD8+ T cells. In this study, we show that L. monocytogenes-specific CD8+ T cell populations primed in antibiotic-pretreated mice undergo brief effector phase, but rapidly develop phenotypic (CD127(high), CD43(low)) and functional (granzyme B(low), IL-2-producing) characteristics of memory CD8+ T cells. These early memory CD8+ T cells were capable of substantial secondary expansion in response to booster challenge at day 7 postinfection, resulting in significantly elevated numbers of secondary effector and memory CD8+ T cells and enhanced protective immunity compared with control-infected mice. Although early expansion in numbers is similar after L. monocytogenes infection of antibiotic-pretreated and control mice, the absence of sustained proliferation coupled with decreased killer cell lectin-like receptor G-1 up-regulation on responding CD8+ T cells may explain the rapid effector to memory CD8+ T cell transition. In addition, antibiotic treatment 2 days post-L. monocytogenes challenge accelerated the generation of CD8+ T cells with memory phenotype and function, and this accelerated memory generation was reversed in the presence of CpG-induced inflammation. Together, these data show that the rate at which Ag-specific CD8+ T cell populations acquire memory characteristics after infection is not fixed, but rather can be manipulated by limiting inflammation that will in turn modulate the timing and extent to which CD8+ T cells proliferate and up-regulate killer cell lectin-like receptor G-1 expression.  相似文献   

7.
During infection with lymphocytic choriomeningitis virus, CD8(+) T cells differentiate rapidly into effectors (CD62L(low)CD44(high)) that differentiate further into the central memory phenotype (CD62L(high)CD44(high)) gradually. To evaluate whether this CD8(+) T cell differentiation program operates in all infection models, we evaluated CD8(+) T cell differentiation during infection of mice with recombinant intracellular bacteria, Listeria monocytogenes (LM) and Mycobacterium bovis (BCG), expressing OVA. We report that CD8(+) T cells primed during infection with the attenuated pathogen BCG-OVA differentiated primarily into the central subset that correlated to reduced attrition of the primed cells subsequently. CD8(+) T cells induced by LM-OVA also differentiated into central phenotype cells first, but the cells rapidly converted into effectors in contrast to BCG-OVA. Memory CD8(+) T cells induced by both LM-OVA as well as BCG-OVA were functional in that they produced cytokines and proliferated extensively in response to antigenic stimulation after adoptive transfer. During LM-OVA infection, if CD8(+) T cells were guided to compete for access to APCs, then they received reduced stimulation that was associated with increased differentiation into the central subset and reduced attrition subsequently. Similar effect was observed when CD8(+) T cells encountered APCs selectively during the waning phase of LM-OVA infection. Taken together, our results indicate that the potency of the pathogen can influence the differentiation and fate of CD8(+) T cells enormously, and the extent of attrition of primed CD8(+) T cells correlates inversely to the early differentiation of CD8(+) T cells primarily into the central CD8(+) T cell subset.  相似文献   

8.
9.
CD4 T cell-dependent CD8 T cell maturation   总被引:7,自引:0,他引:7  
We have investigated the contribution of CD4 T cells to the optimal priming of functionally robust memory CD8 T cell subsets. Intranasal infection of CD4 T cell-deficient (CD4(-/-)) mice with lymphocytic choriomeningitis virus resulted in the elaboration of virus-specific CD8 T cell responses that cleared the infection. However, by comparison with normal mice, the virus-specific CD8 T cells in CD4(-/-) mice were quantitatively and qualitatively different. In normal mice, lymphocytic choriomeningitis virus-specific memory CD8 T cells are CD44(high), many are CD122(high), and a majority of these cells regain expression of CD62L overtime. These cells produce IFN-gamma and TNF-alpha, and a subset also produces IL-2. In the absence of CD4 T cell help, a distinct subset of memory CD8 T cells develops that remains CD62L(low) up to 1 year after infection and exhibits a CD44(int)CD122(low) phenotype. These cells are qualitatively different from their counterparts in normal hosts, as their capacity to produce TNF-alpha and IL-2 is diminished. In addition, although CD4-independent CD8 T cells can contain the infection following secondary viral challenge, their ability to expand is impaired. These findings suggest that CD4 T cell responses not only contribute to the optimal priming of CD8 T cells in chronically infected hosts, but are also critical for the phenotypic and functional maturation of CD8 T cell responses to Ags that are more rapidly cleared. Moreover, these data imply that the development of CD62L(high) central memory CD8 T cells is arrested in the absence of CD4 T cell help.  相似文献   

10.
11.
CMVs are beta herpesviruses that establish lifelong latent infection of their hosts. Acute infection of C57BL/6 mice with murine CMV elicits a very broad CD8 T cell response, comprising at least 24 epitopes from 18 viral proteins. In contrast, we show here that the CD8 T cell response in chronically infected mice was dominated by only five epitopes. Altogether, four distinct CD8 T cell kinetic patterns were evident. Responses to some epitopes, including M45, which dominates the acute response, contracted sharply after day 7 and developed into stable long-term memory. The response to m139 underwent rapid expansion and contraction, followed by a phase of memory inflation, whereas the response to an M38 epitope did not display any contraction phase. Finally, responses against two epitopes encoded by the immediate early gene IE3 were readily detectable in chronically infected mice but near the limit of detection during acute infection. CD8 T cells specific for the noninflationary M45 epitope displayed a classic central memory phenotype, re-expressing the lymph node homing receptor CD62L and homeostatic cytokine receptors for IL-7 and IL-15, and produced low levels of IL-2. Responses to two inflationary epitopes, m139 and IE3, retained an effector memory surface phenotype (CD62L(low), IL-7Ralpha(-), IL-15Rbeta(-)) and were unable to produce IL-2. We suggest that immunological choices are superimposed on altered viral gene expression profiles to determine immunodominance during chronic murine CMV infection.  相似文献   

12.
Expression of IL-7Ralpha on a subset of Ag-specific effector CD8 T cells is believed to identify memory cell precursors. However, whether IL-7 regulates IL-7Ralpha expression in vivo and is responsible for selective survival of IL-7Ralpha(+) effector cells is unknown. Our results show that in the absence of IL-7, IL-7Ralpha expression was extinguished on the majority of CD8 T cells responding to virus infection, sustained on a subset of effector cells transitioning to memory, and expressed at high levels by memory cells. Additionally, an IL-7-deficient environment was capable of supporting bcl-2 up-regulation and memory cell development in response to virus infection. Thus, IL-7Ralpha regulation occurs independently of IL-7 in responding CD8 T cells, indicating that CD8 memory T cell precursors are not selected by IL-7/IL-7Ralpha interactions.  相似文献   

13.
The goal of this study was to compare the ability of donor naive and alloantigen-primed effector memory T cells to induce graft-vs-host disease after bone marrow transplantation in MHC-mismatched irradiated host mice. Purified CD4(+) naive (CD62L(high)CD44(low)) T cells and CD4(+) effector memory (CD62L(low)CD44(high)) T cells obtained from unprimed donors and donors primed to host alloantigens, respectively, were injected into host mice, and the rapidity, severity, and pattern of tissue injury of graft-vs-host disease was assessed. Unexpectedly, the naive T cells induced a more acute and severe colitis than the primed memory cells. Whereas the naive T cells expressing CD62L and CCR7 lymph node homing receptors vigorously expanded in mesenteric lymph nodes and colon by day 6 after transplantation, the primed memory T cells without these receptors had 20- to 100-fold lower accumulation at this early time point. These differences were reflected in the significantly more rapid decline in survival and weight loss induced by naive T cells. The primed memory T cells had a greater capacity to induce chronic colitis and liver injury and secrete IL-2 and IFN-gamma in response to alloantigenic stimulation compared with memory T cells from unprimed donors. Nevertheless, the expected increase in potency as compared with naive T cells was not observed due to differences in the pattern and kinetics of tissue injury.  相似文献   

14.
IL-2Ralpha-deficient (IL-2Ralpha(-/-)) mice exhibit an impaired activation-induced cell death for T cells and develop abnormal T cell activation with age. In our study, we found that IL-2Ralpha(-/-) mice at the age of 5 wk contained an increased number of CD44(+)CD69(-)CD8(+) T cells in lymph nodes, which expressed a high intensity of IL-2Rbeta and vigorously proliferated in response to a high dose of IL-15 or IL-2. The T cells produced a large amount of IFN-gamma in response to IL-15 plus IL-12 in a TCR-independent bystander manner. When IL-2Ralpha(-/-) mice were inoculated i.p. with HSV type 2 (HSV-2) 186 strain, they showed resistance to the infection accompanied by an increased level of serum IL-15. The depletion of CD8(+) T cells by in vivo administration of anti-CD8 mAb rendered IL-2Ralpha(-/-) mice susceptible to HSV-2-induced lethality. These results suggest that memory-type CD8(+) T cells play a novel role in the protection against HSV-2 infection in IL-2Ralpha(-/-) mice.  相似文献   

15.
We previously demonstrated that protection induced by radiation-attenuated (gamma) Plasmodium berghei sporozoites is linked to MHC class I-restricted CD8(+) T cells specific for exoerythrocytic-stage Ags, and that activated intrahepatic memory CD8(+) T cells are associated with protracted protection. In this study, we further investigated intrahepatic memory CD8(+) T cells to elucidate mechanisms required for their maintenance. Using phenotypic markers indicative of activation (CD44, CD45RB), migration (CD62L), and IFN-gamma production, we identified two subsets of intrahepatic memory CD8(+) T cells: the CD44(high)CD45RB(low)CD62L(low)CD122(low) phenotype, representing the dominant effector memory set, and the CD44(high)CD45RB(high)CD62L(low/high)CD122(high) phenotype, representing the central memory set. Only the effector memory CD8(+) T cells responded swiftly to sporozoite challenge by producing sustained IFN-gamma; the central memory T cells responded with delay, and the IFN-gamma reactivity was short-lived. In addition, the subsets of liver memory CD8(+) T cells segregated according to the expression of CD122 (IL-15R) in that only the central memory CD8(+) T cells were CD122(high), whereas the effector memory CD8(+) T cells were CD122(low). Moreover, the effector memory CD8(+) T cells declined as protection waned in mice treated with primaquine, a drug that interferes with the formation of liver-stage Ags. We propose that protracted protection induced by P. berghei radiation-attenuated sporozoites depends in part on a network of interactive liver memory CD8(+) T cell subsets, each representing a different phase of activation or differentiation, and the balance of which is profoundly affected by the repository of liver-stage Ag and IL-15.  相似文献   

16.
Although IL-7 has recently emerged as a key cytokine involved in controlling the homeostatic turnover and the survival of peripheral resting memory CD4(+) T cells, its potential to be sustained pathogenic CD4(+) T cells in chronic immune diseases, such as inflammatory bowel diseases, still remains unclear. In this study, we demonstrate that IL-7 is essential for the development and the persistence of chronic colitis induced by adoptive transfer of normal CD4(+)CD45RB(high) T cells or colitogenic lamina propria (LP) CD4(+) memory T cells into immunodeficient IL-7(+/+) x RAG-1(-/-) and IL-7(-/-) x RAG-1(-/-) mice. Although IL-7(+/+) x RAG-1(-/-) recipients transferred with CD4(+)CD45RB(high) splenocytes developed massive inflammation of the large intestinal mucosa concurrent with massive expansion of Th1 cells, IL-7(-/-) x RAG-1(-/-) recipients did not. Furthermore, IL-7(-/-) x RAG-1(-/-), but not IL-7(+/+) x RAG-1(-/-), mice transferred with LP CD4(+)CD44(high)CD62L(-)IL-7Ralpha(high) effector-memory T cells (T(EM)) isolated from colitic CD4(+)CD45RB(high)-transferred mice did not develop colitis. Although rapid proliferation of transferred colitogenic LP CD4(+) T(EM) cells was observed in the in IL-7(-/-) x RAG-1(-/-) mice to a similar extent of those in IL-7(+/+) x RAG-1(-/-) mice, Bcl-2 expression was significantly down-modulated in the transferred CD4(+) T cells in IL-7(-/-) x RAG-1(-/-) mice compared with those in IL-7(+/+) x RAG-1(-/-) mice. Taken together, IL-7 is essential for the development and the persistence of chronic colitis as a critical survival factor for colitogenic CD4(+) T(EM) cells, suggesting that therapeutic approaches targeting IL-7/IL-7R signaling pathway may be feasible in the treatment of inflammatory bowel diseases.  相似文献   

17.
The existence of distinct subsets of memory CD8 T cells with different characteristics is now well established. In this work, we describe two subsets of mouse CD8 T cells with memory characteristics that coexist in primed thymectomized TCR-transgenic F5 mice and that share some properties with the human central and effector memory cells. The first subset corresponds to CD8 T cells generated following nucleoprotein 68 peptide priming which are CD44(int)CD122(-)nucleoprotein 68/H-2D(b) tetramer(+) and express high levels of CCR7 mRNA. In contrast, CD8 T cells in the second subset are CD44(high)CD122(+), are heterogeneous in terms of Ag specificity, and express low levels of CCR7 mRNA. We have studied the functional characteristics and the persistence of these two subsets in thymectomized mice. CD44(int) CD8 T cells persist like naive cells; i.e., they are slowly lost with time. However, surviving cells maintain their phenotype and memory characteristics for the entire life span of the animal. In contrast, CD44(high) CD8 T cells are persistent and accumulate in thymectomized but not euthymic mice. This is correlated with an increased in vivo proliferative and survival potential of these cells. These results show that acquisition of enhanced functional characteristics and long-term persistence by memory T cells are independent. This may have important consequences for the design of specific vaccine.  相似文献   

18.
A massive systemic expansion of CD8(+) memory T (T(M)) cells and a remarkable increase in circulating IL-2 were observed only in IL-2Ralpha (CD25) knockout (KO) mice but not in IL-2 KO and scurfy mice, although all three mutants lack regulatory T (Treg) cells. However, both phenotypes were suppressed by the transfer of Treg cells. The data presented indicate that Treg cell deficiency drives naive T cells to T(M) cells. The lack of high-affinity IL-2R in IL-2Ralpha KO mice increases circulating IL-2 that is then preferentially used by CD8(+) T(M) cells through its abundant low-affinity IL-2R, resulting in systemic CD8(+) T(M) cell dominance. Our study demonstrates the critical control of CD8(+) T(M) cell homeostasis by a Treg cell-dependent novel function of CD25 and resolves its mechanism of action.  相似文献   

19.
Protection against malaria often decays in the absence of infection, suggesting that protective immunological memory depends on stimulation. Here we have used CD4(+) T cells from a transgenic mouse carrying a T cell receptor specific for a malaria protein, Merozoite Surface Protein-1, to investigate memory in a Plasmodium chabaudi infection. CD4(+) memory T cells (CD44(hi)IL-7Rα(+)) developed during the chronic infection, and were readily distinguishable from effector (CD62L(lo)IL-7Rα(-)) cells in acute infection. On the basis of cell surface phenotype, we classified memory CD4(+) T cells into three subsets: central memory, and early and late effector memory cells, and found that early effector memory cells (CD62L(lo)CD27(+)) dominated the chronic infection. We demonstrate a linear pathway of differentiation from central memory to early and then late effector memory cells. In adoptive transfer, CD44(hi) memory cells from chronically infected mice were more effective at delaying and reducing parasitemia and pathology than memory cells from drug-treated mice without chronic infection, and contained a greater proportion of effector cells producing IFN-γ and TNFα, which may have contributed to the enhanced protection. These findings may explain the observation that in humans with chronic malaria, activated effector memory cells are best maintained in conditions of repeated exposure.  相似文献   

20.
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号