共查询到20条相似文献,搜索用时 0 毫秒
1.
Arzumanov A Stetsenko DA Malakhov AD Reichelt S Sørensen MD Babu BR Wengel J Gait MJ 《Oligonucleotides》2003,13(6):435-453
2.
We synthesized and evaluated by surface plasmon resonance 64 LNA/2'-O-methyl sequences corresponding to all possible combinations of such residues in a kissing aptamer loop complementary to the 6-nt loop of the TAR element of HIV-1. Three combinations of LNA/2'-O-methyl nucleoside analogues where one or two LNA units are located on the 3' side of the aptamer loop display an affinity for TAR below 1nM, i.e. one order of magnitude higher than the parent RNA aptamer. One of these combinations inhibits the TAR-dependent luciferase expression in a cell assay. 相似文献
3.
2'-O-Methyl oligoribonucleotides bearing a 3'-[2,6-dioxo-3,7-diaza-10-(1,5,9-triazacyclododec-3-yl)decyl phospate conjugate group have been shown to cleave in slight excess of Zn(2+) ions complementary oligoribonucleotides at the 5'-side of the last base-paired nucleotide. The cleavage obeys first-order kinetics and exhibits turnover. The acceleration compared to the monomeric Zn(2+) 1,5,9-triazacyclododecane chelate is more than 100-fold. In addition, 2'-O-methyl oligoribonucleotides having the 1,5,9-triazacyclododec-3-yl group tethered to the anomeric carbon of an intrachain 2-deoxy-beta-d-erythro-pentofuranosyl group via a 2-oxo-3-azahexyl, 2,6-dioxo-3,7-diazadecyl, or 2,9-dioxo-3,10-diazatridecyl linker have been studied as cleaving agents. These cleave as zinc chelates a tri- and pentaadenyl bulge opposite to the conjugate group approximately 50 times as fast as the monomeric chelate and show turnover. The cleavage rate is rather insensitive to the length of linker. Interestingly, a triuridyl bulge remains virtually intact in striking contrast to a triadenyl bulge. Evidently binding of the zinc chelate to a uracil base prevents its catalytic action. Replacement of Zn(2+) with Cu(2+) or Ni(2+) retards the cleaving activity of all the cleaving agents tested. 相似文献
4.
The potential of aminoglycosides to induce RNA-invasion has been demonstrated. For this purpose, aminoglycoside-3'-conjugates of 2'-O-methyl oligoribonucleotides have been synthesized entirely on a solid phase. The synthesis includes an automated oligonucleotide chain elongation to solid-supported neomycin, ribostamycin, and methyl neobiosamine, and a two-step deprotection/release of the solid-supported conjugate, which allows exploitation of a simple protecting group scheme. Conjugates have been targeted to a (19)F labeled HIV-1 TAR RNA model (Trans Activation Response element of HIV), which allows monitoring of the invasion by (19)F NMR spectroscopy. A remarkably enhanced invasion, compared to that resulting from the corresponding unmodified 2'-O-methyl oligoribonucleotide (5'-CAGGCUCA-3'), has been obtained by the neomycin conjugate. The increased affinity results from a cooperative binding of the neomycin moiety and hybridization, though the invasion may also follow a mechanism, in which the first molar equivalent of the conjugate induces hybridization of the second. 相似文献
5.
LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1 总被引:4,自引:3,他引:1
One of the major limitations of the use of phosphodiester oligonucleotides in cells is their rapid degradation by nucleases. To date, several chemical modifications have been employed to overcome this issue but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this work conformationally restricted nucleotides, locked nucleic acid (LNA), were investigated to design nuclease resistant aptamers targeted against the HIV-1 TAR RNA. LNA/DNA chimeras were synthesized from a shortened version of the hairpin RNA aptamer identified by in vitro selection against TAR. The results indicate that these modifications confer good protection towards nuclease digestion. Electrophoretic mobility shift assays, thermal denaturation monitored by UV-spectroscopy and surface plasmon resonance experiments identified LNA/DNA TAR ligands that bind to TAR with a dissociation constant in the low nanomolar range as the parent RNA aptamer. The crucial G, A residues that close the aptamer loop remain a key structural determinant for stable LNA/DNA chimera–TAR complexes. This work provides evidence that LNA modifications alternated with DNA can generate stable structured RNA mimics for interacting with folded RNA targets. 相似文献
6.
7.
8.
9.
10.
11.
INH, a type 2A protein phosphatase (PP2A), negatively regulates entry into M phase and the cyclin B-dependent activation of cdc2 in Xenopus extracts. INH appears to be central to the mechanism of the trigger for mitotic initiation, as it prevents the premature activation of cdc2. We first show that INH is a conventional form of PP2A with a B alpha regulatory subunit. We next explore the mechanism by which it inhibits cdc2 activation by examining the effect of purified PP2A on the reaction pathways controlling cdc2 activity. Our results suggest that although PP2A inhibits the switch in tyrosine kinase and tyrosine phosphatase activities accompanying mitosis, this switch is a consequence of the inhibition of some other rate-limiting event. In the preactivation phase, PP2A inhibits the pathway leading to T161 phosphorylation, suggesting that this activity may be one of the rate-limiting events for transition. However, our results also suggest that the accumulation of active cdc2/cyclin complexes during the lag is only one of the events required for triggering entry into mitosis. 相似文献
12.
Lescar J Brynda J Rezacova P Stouracova R Riottot MM Chitarra V Fabry M Horejsi M Sedlacek J Bentley GA 《Protein science : a publication of the Protein Society》1999,8(12):2686-2696
The monoclonal antibody 1696, directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates. This antibody cross-reacts with peptides that include the N-terminus of the enzyme, a region that is well conserved in sequence among different viral strains and which, furthermore, is crucial for homodimerization to the active enzymatic form. This observation, as well as antigen-binding studies in the presence of an active site inhibitor, suggest that 1696 inhibits the HIV protease by destabilizing its active homodimeric form. To characterize further how the antibody 1696 inhibits the HIV-1 and HIV-2 proteases, we have solved the crystal structure of its Fab fragment by molecular replacement and refined it at 3.0 A resolution. The antigen binding site has a deep cavity at its center, which is lined mainly by acidic and hydrophobic residues, and is large enough to accommodate several antigen residues. The structure of the Fab 1696 could form a starting basis for the design of alternative HIV protease-inhibiting molecules of broad specificity. 相似文献
13.
1. Certain metal ions have been identified as inhibitors (IC50 1-20 microM) of the aspartic proteinase of Human Immunodeficiency Virus Type 1 (HIV-PR). 2. By contrast most simple metal ions do not inhibit this enzyme. 3. Those that did inhibit have in common a high charge/size ratio or "hard" acidic nature, preferring to combine covalently with oxygen donor ligands. 4. Some evidence from independent X-ray crystal structure determinations suggests that the metalloinhibitors identified here may bind in the active site of the enzyme via coordination to the carboxylate side chains of the essential active site residues Asp 25 and 125. 5. Although the measured inhibition is only microM, very few enzyme-inhibitor interactions can be taking place and so more complex metalloinhibitors with ligands that can also bind to peptide side chains of the enzyme might be significantly more potent inhibitors of HIV-PR and of viral replication. 相似文献
14.
15.
16.
Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes 总被引:3,自引:0,他引:3
Zhihua Sui Rafael Salto Jia Li Charles Craik Paul R. Ortiz de Montellano 《Bioorganic & medicinal chemistry》1993,1(6):415-422
Curcumin, a relatively non-toxic natural product isolated from Curcuma longa, is a modest inhibitor of the HIV-1 (1050 = 100 μM) and HIV-2 (IC50 = 250 μM) proteases. Simple modifications of the curcumin structure raise the IC50 value but complexes of the central dihydroxy groups of curcumin with boron lower the IC50 to a value as low as 6 μM. The boron complexes are also time-dependent inactivators of the HIV proteases. The increased affinity of the boron complexes may reflect binding of the orthogonal domains of the inhibitor in intersecting sites within the substrate-binding cavity of the enzyme, while activation of the ,β-unsaturated carbonyl group of curcumin by chelation to boron probably accounts for time-dependent inhibition of the enzyme. 相似文献
17.
An infectious chimeric human immunodeficiency virus type 2 (HIV-2) expressing the HIV-1 principal neutralizing determinant. 下载免费PDF全文
The human immunodeficiency virus type 1 strain MN (HIV-1MN) principal neutralizing determinant (PND, V3 loop) was introduced into infectious molecular clones HIV-2KR and simian immunodeficiency virus mm239 (SIVmm239) by hybridization PCR, replacing the corresponding HIV-2 or SIV envelope cysteine loops with the HIV-1 coding sequence. The HIV-2 chimera (HIV-2KR-MNV3) was found to be capable of infecting a number of T-cell lymphoblastic cell lines as well as primary peripheral blood mononuclear cells. In contrast, the SIV chimera (SIV239MNV3) was not replication competent. Envelope produced by HIV-2KR-MNV3 but not the parental HIV-2KR was recognized by V3-specific and HIV-1-specific polyclonal antisera in radioimmunoprecipitation assays. HIV-2-specific antisera recognized both the chimeric and parental virus but not HIV-1MN. The chimeric HIV-2KR-MNV3 virus proved to be exquisitely susceptible to neutralization by HIV-1-specific and V3-specific antisera, suggesting the potential for use in animal models designed to test HIV-1 vaccine candidates which target the PND. 相似文献
18.
19.
20.