首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N-linked carbohydrate chains of the beta subunit of human chorionic gonadotropin (hCG-beta) isolated from the culture fluid of the choriocarcinoma cell line BeWo were released enzymatically by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Subsequently, the O-linked oligosaccharides were split off from the N-deglycosylated protein by mild alkaline borohydride treatment. The carbohydrate chains were purified in their intact sialylated forms by FPLC anion-exchange chromatography on Mono Q, HPLC on Lichrosorb-NH2, and high-pH anion-exchange chromatography on CarboPac PA1. 1H-NMR spectroscopic analysis of the major fractions demonstrates the occurrence of the following sialylated diantennary and triantennary N-linked oligosaccharides. Residues not written in bold letters are variably present. [formula: see text] The incidence of triantennary carbohydrate chains is much higher than in normal urinary hCG-beta (26% vs 2%). The same holds for the alpha 1-6-fucosylation of the asparagine-bound GlcNAc (95% vs 42%). The presence of a bisecting GlcNAc and the occurrence of alpha 2-6-linked Neu5Ac in the most abundant N-glycans, are new features for hCG-beta. The major O-linked carbohydrate chains identified are the tetrasaccharide Neu5Ac alpha 2-3Gal beta 1-3(Neu5Ac alpha 2-6)GalNAc-ol and the hexasaccharide Neu5Ac alpha 2-3Gal beta 1-4GlcNAc beta 1-6(Neu5Ac alpha 2-3Gal beta 1-3)GalNAc-ol, both also found in normal urinary hCG. In addition, two novel O-glycans were characterized: [formula: see text]  相似文献   

2.
The aim of this work was the characterization of the glycoconjugates of the premeiotic spermatogenetic cells of the testis of an urodele amphibian, Pleurodeles waltl, by means of lectins in combination with several chemical and enzymatic procedures, in order to establish the distribution of N- and O-linked oligosaccharides in these cells. In the cytoplasm of the primordial germ cells, primary and secondary spermatogonia and primary spermatocytes, a granular structure can be observed close to the nucleus. These granules contain four types of sugar chains according to their appearance during the differentiation process: 1. some oligosaccharides that are identified in all the four cell types above mentioned, which include N-linked oligosaccharides with Fuc, Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc and O-linked oligosaccharides with Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc; 2. other glycan chains that are not present in the primary spermatocytes (N-linked oligosaccharides with DBA-positive GalNAc, GlcNAc, and a slight amount of Neu5Ac alpha2,6Gal/GalNAc and O-linked oligosaccharides with WGA-positive GlcNAc); 3. the sugar chains that are not in the earliest step of spermatogenesis (formed by both N-linked and O-linked oligosaccharides with Glc); and 4. other that appear at the earliest and latest stages, but not in the intermediate ones, (N-linked oligosaccharides with Man and O-linked oligosaccharides with SBA- and HPA-positive GalNAc and PNA-positive Gal beta1,3GalNAc). This structure could be related with the Drosophila spectrosome and fusome, unusual cytoplasmic organelles implicated in cystic germ cell development. Data from the present work, as compared with those from mammals and other vertebrates, suggest that, although no dramatic changes in the glycosylation pattern are observed, some cell glycoconjugates are modified in a predetermined way during the early steps of the spermatogenetic differentiation process.  相似文献   

3.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

4.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

5.
Milk of an Asian elephant (Elephas maximus), collected at 11 days post partum, contained 91 g/L of hexose and 3 g/L of sialic acid. The dominant saccharide in this milk sample was lactose, but it also contained isoglobotriose (Glc(alpha1-3)Gal(beta1-4)Glc) as well as a variety of sialyl oligosaccharides. The sialyl oligosaccharides were separated from neutral saccharides by anion exchange chromatography on DEAE-Sephadex A-50 and successive gel chromatography on Bio Gel P-2. They were purified by high performance liquid chromatography (HPLC) using an Amide-80 column and characterized by 1H-NMR spectroscopy. Their structures were determined to be those of 3'-sialyllactose, 6'-sialyllactose, monofucosyl monosialyl lactose (Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc), sialyl lacto-N-neotetraose c (LST c), galactosyl monosialyl lacto-N-neohexaose, galactosyl monofucosyl monosialyl lacto-N-neohexaose and three novel oligosaccharides as follows: Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, and Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. The higher oligosaccharides contained only the type II chain (Gal(beta1-4)GlcNAc); this finding differed from previously published data on Asian elephant milk oligosaccharides.  相似文献   

6.
Fibronectin purified from human term amniotic fluid contains 10 asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction and fractionated by anion-exchange column chromatography and serial lectin affinity chromatography. The structures of these sugar chains were determined by sequential exoglycosidase digestion in combination with methylation analysis. The results indicated that they are a mixture of bisected and non-bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc beta 1----, GlcNAc beta 1----, Neu5Ac alpha 2----3Gal beta 1----4GlcNAc beta 1----, and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

7.
Carbohydrates were extracted from the milk of a beluga, Delphinopterus leucas (family Odontoceti), and two Minke whales, Balaenoptera acutorostrata (Family Mysticeti), sampled late in their respective lactation periods. Free oligosaccharides were separated by gel filtration and then neutral oligosaccharides were purified by preparative thin layer chromatography and gel filtration, while acidic oligosaccharides were purified by ion-exchange chromatography, gel filtration and high performance liquid chromatography (HPLC). Their structures were determined by 1H-NMR. In one of the Minke whale milk samples, lactose was a dominant saccharide, with Fuc(alpha1-2)Gal(beta1-4)Glc(2'-fucosyllactose), Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc(lacto-N-neotetraose), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc(A-tetrasaccharide), Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (para lacto-N-neohexaose), Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (sialyl lacto-N-neotetraose), Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LST c) and Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (sialyl para lacto-N-neohexaose) also being found in the milk. The second Minke whale sample contained similar amounts of lactose, 2'-fucosyllactose and A-tetrasaccharide, but no free sialyl oligosaccharides. Sialyl lacto-N-neotetraose and sialyl para lacto-N-neohexaose are novel oligosaccharides which have not been previously reported from any mammalian milk or colostrum. These and other oligosaccharides of Minke whale milk may have biological significance as anti-infection factors, protecting the suckling young against bacteria and viruses. The lactose of Minke whale milk could be a source of energy for them. The beluga whale milk contained trace amounts of Neu5Ac(alpha2-3)Gal(beta1-4)Glc(3'-N-acetylneuraminyllactose), but the question of whether it contained free lactose could not be clarified. Therefore, lactose may not be a source of energy for suckling beluga whales.  相似文献   

8.
The carbohydrate binding specificity of Allomyrina dichotoma lectin II was investigated by analyzing the behavior of various complex type oligosaccharides and human milk oligosaccharides on an A. dichotoma lectin II-agarose column. Basically, the lectin interacts with the Gal beta 1----4GlcNAc group. Substitution of their terminal galactose residues by Neu5Ac alpha 2----6 will enhance their affinity to the lectin. By contraries, substitution at the C-2 or C-3 position of their terminal galactose with other sugars including sialic acid deprives their affinity to the lectin. With this characteristic, the immobilized lectin column can be used to separate complex type oligosaccharides with the Neu5Ac alpha 2----6Gal beta 1----4GlcNAc group from their isomeric oligosaccharides with the Neu5Ac alpha 2----3Gal beta 1----4GlcNAc group, where Neu5Ac is N-acetylneuraminic acid.  相似文献   

9.
Glycopeptides have been isolated from the urine of two patients, aged 5 and 6, with a new lysosomal storage disease characterized by a deficiency in alpha-N-acetylgalactosaminidase activity. Isolation of these glycopeptides was achieved using gel filtration and ion-exchange chromatography. Structural determination was done using one- and two-dimensional 500 MHz 1H-NMR spectroscopy and FAB mass spectrometry of native and derivatized glycopeptides. The following structures were inferred as being present: Glycopeptide A (up to 140 mg/l urine) (1)-(3) Neu5Ac alpha 2-3Gal beta 1-3 (Neu5Ac alpha 2-6)GalNAc alpha 1-R A1: R = Ser A2: R = Thr A3: R = Thr-Pro Glycopeptide B (up to 80 mg/l urine) (4)-(6) Neu5Ac alpha 2-3Gal beta 1-4GlcNAc beta 1-6 (Neu5Ac alpha 2-3-Gal beta 1-3) GalNAc alpha 1-R B1: R = Ser B2:R = Thr B3: R = Thr-Pro  相似文献   

10.
Structures of O-linked oligosaccharides of leukosialin isolated from K562 erythroid, HL-60 promyelocytic, and HSB-2 T-lymphoid cell lines were examined. Leukosialin was isolated by specific immunoprecipitation from cells which were metabolically labeled with [3H]glucosamine, and glycopeptides were isolated after Pronase digestion. O-Linked oligosaccharides were released by alkaline borohydride treatment, and the structures of purified oligosaccharides were elucidated by specific exoglycosidase digestion, Smith degradation, and methylation anaylsis. Oligosaccharides from K562 cells were found to be GalNAcOH, Gal beta 1----3GalNAcOH, NeuNAc alpha 2----6GalNAcOH, NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH, and NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH. On the other hand, oligosaccharides from HL-60 and HSB-2 cells were found to be NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6(Gal beta 1----3)GalNAcOH, Gal beta 1----4GlcNAc beta 1----6(NeuNAc alpha 2----3)Gal beta 1----3)GalNAcOH, and NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6(NeuNAc alpha 2----3Gal beta 1----3)GalNAcOH. These results clearly indicate that leukosialin can be differently glycosylated with O-linked chains, and each erythroid or myeloid (and T-lymphoid) cell line expresses a characteristic set of O-linked oligosaccharides which differ in core structures as well as in sialylation.  相似文献   

11.
A mouse monoclonal antibody OKT3, of IgG2a isotype, was isolated from hybridoma culture fluid. Sugar analysis showed the presence of sialic acid, galactose, mannose, fucose, and N-acetylglucosamine, i.e. sugars typical for N-glycosidically linked carbohydrate chains. The absence of N-acetylgalactosamine revealed that O-glycosidically linked carbohydrates were not present. The purified antibody was reduced, alkylated, and separated into heavy and light chains, and all carbohydrates were shown to be associated with the heavy chains. The N-linked carbohydrate chains were isolated as alditols using strong alkaline-borohydride degradation and further fractionated on a concanavalin A-Sepharose column and high performance ion exchange chromatography with pulsed amperometric detection. Structural analysis was carried out on the isolated oligosaccharide alditols by chemical analyses, fast atom bombardment mass spectrometry, and 500-MHz 1H NMR spectroscopy. Triantennary and biantenary types of structures were found. The triantennary structures were present as trisialo and tetrasialo forms without fucose; the tetrasialo forms were shown to contain a sequence of Neu5Ac alpha 2-3Gal beta 1-3[Neu5Ac alpha 2-6]GlcNAc beta 1- on one of the branches. The biantennary structures were present as completely sialylated nonfucosylated species and as asialo-, agalacto-, and partially fucosylated structures.  相似文献   

12.
Starting from a tumor-associated synthetic MUC1-derived peptide MUC1a' and using a completely enzymatic approach for the synthesis of the core-2 sialyl Lewis X glycopart, the following glycopeptide was synthesized: AHGV[Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc(alpha1-O)]TSAPDTR. First, polypeptide N-acetylgalactosaminyltransferase 3 was used to site-specifically glycosylate MUC1a' to give MUC1a'-GalNAc. Then, in a one-pot reaction employing beta-galactosidase and core-2 beta6-N-acetylglucosaminyltransferase the core-2 O-glycan structure was prepared. The core-2 structure was then sequentially galactosylated, sialylated, and fucosylated by making use of beta4-galactosyltransferase 1, alpha3-sialyltransferase 3, and alpha3-fucosyltransferase 3, respectively, resulting in the sialyl Lewis X glycopeptide. The overall yield of the final compound was 23% (3.2 mg, 1.4 micromol). During the synthesis three intermediate glycopeptides containing O-linked GalNAc, Gal(beta1-4)GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc, and Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc, respectively, were isolated in mg quantities. All products were characterized by mass spectrometry and NMR spectroscopy.  相似文献   

13.
Two size classes of O-glycosidically linked oligosaccharides were liberated from glycoprotein E1 of mouse hepatitis virus (MHV) A59 by reductive beta-elimination and separated by h.p.l.c. The structures of the reduced oligosaccharides were determined by successive exoglycosidase digestions and by methylation analyses involving combined capillary gas chromatography-mass spectrometry and mass fragmentography after chemical ionization with ammonia. Oligosaccharide A (Neu5Ac alpha 2----3 Gal beta 1----3 GalNAc) comprised 35% of the total carbohydrate side chains, while the remaining 65% of the oligosaccharides of E1 had the branched structure B: Neu5Ac alpha 2----3 Gal beta 1----3 (Neu5Ac alpha 2----6) GalNAc. Both oligosaccharides were linked to the E1 polypeptide via N-acetylgalactosamine, and 20% of the sialic acids present in E1 glycopeptides were found to consist of N-acetyl-9-mono-O-acetylneuraminic acid. The reported structures of the O-linked glycans are discussed in the context of the amino acid sequence of E1, which exhibits a cluster of four hydroxyamino acids (Ser-Ser-Thr-Thr) as potential O-glycosylation sites at the amino terminus. Oligosaccharides with identical structures and an identical O-glycosylated tetrapeptide sequence are present in the blood group M-active glycophorin A of the human erythrocyte membrane.  相似文献   

14.
Enzymatic alpha 2,3-sialylation of GalNAc has not been described previously, although some glycoconjugates containing alpha 2,3-sialylated GalNAc residues have been reported. In the present experiments, recombinant soluble alpha 2,3-sialyltransferase ST3Gal II efficiently sialylated the X(2) pentasaccharide GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, globo-N-tetraose GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and the disaccharide GalNAc beta 1-3Gal in vitro. The purified products were identified as Neu5Ac alpha 2-3GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, Neu5Ac alpha 2-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and Neu5Ac alpha 2-3GalNAc beta 1-3Gal, respectively, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, enzymatic degradations, and one- and two-dimensional NMR-spectroscopy. In particular, the presence of the Neu5Ac alpha 2-3GalNAc linkage was firmly established in all three products by a long range correlation between Neu5Ac C2 and GalNAc H3 in heteronuclear multiple bond correlation spectra. Collectively, the data describe the first successful sialyltransfer reactions to the 3-position of GalNAc in any acceptor. Previously, ST3Gal II has been shown to transfer to the Gal beta 1-3GalNAc determinant. Consequently, the present data show that the enzyme is multifunctional, and could be renamed ST3Gal(NAc) II. In contrast to ST3Gal II, ST3Gal III did not transfer to the X(2) pentasaccharide. The Neu5Ac alpha 2-3GalNAc linkage of sialyl X(2) was cleaved by sialidases from Arthrobacter ureafaciens and Clostridium perfringens, but resisted the action of sialidases from Newcastle disease virus and Streptococcus pneumoniae. Therefore, the latter two enzymes cannot be used to differentiate between Neu5Ac alpha 2-3GalNAc and Neu5Ac alpha 2-6GalNAc linkages, as has been assumed previously.  相似文献   

15.
Samples of milk from a Bryde's whale and a Sei whale contained 2.7 g/100 mL and 1.7 g/100 mL of hexose, respectively. Both contained lactose as the dominant saccharide along with small amounts of Neu5Ac(alpha2-3)Gal(beta1-4)Glc (3'-N-acetylneuraminyllactose), Neu5Ac(alpha2-6)Gal(beta1-4)Glc (6'-N-acetylneuraminyllactose) and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LST c). The dominance of lactose in the carbohydrate of these milks is similar to that of Minke whale milk and bottlenose dolphin colostrum, but the oligosaccharide patterns are different from those of these two species, illustrating the heterogeneity of milk oligosaccharides among the Cetacea.  相似文献   

16.
Bovine prothrombin contains three asparagine-linked sugar chains in 1 molecule. The sugar chains were quantitatively released from the polypeptide backbone by hydrazinolysis. All of the oligosaccharides thus obtained contain N-acetylneuraminic acid. Sialidase treatment of these acidic oligosaccharides released three isomeric oligosaccharides, N-1, N-2 and N-3. N-3 was a typical complex type asparagine-linked sugar chain widely found in other glycoprotein, while N-1 and N-2 were unique, because they contain Gal beta 1 leads to 3GlcNAc grouping in the outer chain moiety. By comparing the data of methylation analysis of the acidic oligosaccharides before and after sialidase treatment, the structures of the sugar chains of bovine prothrombin were confirmed as a mixture of NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn and their partially desialized forms.  相似文献   

17.
Carbohydrates were extracted from milk of a bearded seal, Erignathus barbatus (Family Phocidae). Free neutral oligosaccharides were separated by gel filtration, anion-exchange chromatography and preparative thin layer chromatography, while free acidic oligosaccharides were separated by gel filtration and then purified by ion exchange chromatography, gel filtration and high performance liquid chromatography. Oligosaccharide structures were determined by 1H-NMR spectroscopy. The structures of the neutral oligosaccharides were as follows; lactose, 2'-fucosyllactose, lacto-N-fucopentaose IV, difucosyl lacto-N-neohexaose and difucosyl decasaccharide which contained a lacto-N-neohexaose unit as well as an additional Gal(beta1-4)GlcNAc(beta1-3) unit and two residues of non-reducing Fuc(alpha1-2). The acidic oligosaccharides were thought to contain an Neu5Ac(alpha2-6) residue linked to GlcNAc or a sulfate linked to Gal at OH-3. The sialyl oligosaccharides and sulfated oligosaccharides had a lacto-N-neohexaose unit and two non-reducing Fuc(alpha1-2) residues and some of them had in addition one or two Gal(beta1-4)GlcNAc(beta1-3) units. The milk oligosaccharides of the bearded seal were compared to those of the harbour seal, which had been studied previously.  相似文献   

18.
Sialyl Lewis x (sLe(x)) is an established selectin ligand occurring on N- and O-linked glycans. Using a completely enzymic approach starting from p-nitrophenyl N-acetyl-alpha-D-galactosaminide (GalNAc(alpha1-pNp as core substrate, the sLe(x)-oligosaccharide Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)[Gal(bet a1-3)]GalNAc(alpha1-pNp, representing the O-linked form, was synthesized in an overall yield of 32%. In a first step, Gal(beta1-3)GalNAc(alpha1-pNp was prepared in a yield of 52% using UDP-Gal and an enriched preparation of beta3-galactosyltransferase (EC 2.4.1.122) from rat liver. UDP-GlcNAc and a recombinant affinity-purified preparation of core 2 beta6-N-acetylglucosaminyltransferase (EC 2.4.1.102) fused to Protein A were used to branch the core 1 structure, affording GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc(alpha1-pNp in a yield of >85%. The core 2 structure was galactosylated using UDP-Gal and purified human milk beta4-galactosyltransferase 1 (EC 2.4.1.38) (yield of >85%), then sialylated using CMP-Neu5Ac and purified recombinant alpha3-sialyltransferase 3 (EC 2.4.99.X) (yield of 87%), and finally fucosylated using GDP-Fuc and recombinant human alpha3-fucosyltransferase 6 (EC 2.4.1.152) produced in Pichia pastoris (yield of 100%). Overall 1.5 micromol of product was prepared. MALDI TOF mass spectra, and 1D and 2D TOCSY and ROESY 1H NMR analysis confirmed the obtained structure.  相似文献   

19.
Crude oligosaccharides were recovered from bottlenose dolphin (Tursiops truncatus) colostrum after chloroform/methanol extraction of lipids and protein precipitation, and purified using gel filtration, anion exchange chromatography and high performance liquid chromatography (HPLC). Their chemical structures characterized by NMR spectroscopy were as follows: GalNAc(beta1-4)[Neu5Ac(alpha2-3)]Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc and Gal(alpha1-4)Gal(beta1-4)Glc. The monosialyltetrasaccharide and neutral trisaccharide have not previously been found as free forms in any natural sources including milk or colostrum, although these structures have been found in the carbohydrate units of glycosphingolipids GM2 and Gb3.  相似文献   

20.
We investigated the oligosaccharide sequence of glycoconjugates, mainly sialoglycoconjugates, in the horse oviductal ampulla during oestrus by means of lectin and pre-lectin methods such as the KOH-neuraminidase procedure to remove sialic acid residues and incubation with N-glycosidase F to cleave N-linked glycans. Ciliated cells displayed N-linked oligosaccharides throughout the cytoplasm. The cilia glycocalyx expressed both N- and O-linked (mucin-type) oligosaccharides, both showing a high variety of terminal sequences. In the most non-ciliated cells, the whole cytoplasm contained N-linked oligosaccharides with terminal alphaGal as well as mucin-type glycans with terminal Forssman pentasaccharides. In a few scattered non-ciliated cells, the whole cytoplasm displayed sialylated N-linked oligosaccharides with terminal Neu5Ac-GalNAc and O-linked glycans terminating with neutral and/or alphaGalNAc, Neu5Ac alpha2,6Gal/GalNAc, Neu5AcGal beta1,3GalNAc. Supra-nuclear granules, probably Golgi zones, of non-ciliated cells showed mainly O-linked glycans rich in sialic acid residues. The luminal surface of non-ciliated cells showed N-linked oligosaccharides, containing terminal/internal alphaMan/alphaGlc, betaGlcNAc and terminal alphaGal, as well as mucin-type oligosaccharides terminating with a large variety of either neutral saccharides or sialylated sequences. Apical protrusions containing O-linked oligosaccharides with terminal Forssman pentasaccharide, Neu5Ac-Gal beta1,4GlcNAc, Neu5Ac-GalNAc were seen in non-ciliated cells scattered along the epithelium. These findings show the presence of sialoglycoconjugates in the oviductal ampulla epithelium of the mare and the existence of different lectin binding profiles between ciliated and non-ciliated (secretory) cells, as well as the presence of non-ciliated cell sub-types which might determine functional differences along the ampullary epithelium of mare oviduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号