首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gram-negative bacteria possess an outer membrane (OM) containing lipopolysaccharide (LPS). Proper assembly of the OM not only prevents certain antibiotics from entering the cell, but also allows others to be pumped out. To assemble this barrier, the seven-protein lipopolysaccharide transport (Lpt) system extracts LPS from the outer leaflet of the inner membrane (IM), transports it across the periplasm and inserts it selectively into the outer leaflet of the OM. As LPS is important, if not essential, in most Gram-negative bacteria, the LPS biosynthesis and biogenesis pathways are attractive targets in the development of new classes of antibiotics. The accompanying paper (Simpson BW, May JM, Sherman DJ, Kahne D, Ruiz N. 2015 Phil. Trans. R. Soc. B 370, 20150029. (doi:10.1098/rstb.2015.0029)) reviewed the biosynthesis of LPS and its extraction from the IM. This paper will trace its journey across the periplasm and insertion into the OM.  相似文献   

3.
《Cell》2022,185(7):1143-1156.e13
  1. Download : Download high-res image (338KB)
  2. Download : Download full-size image
  相似文献   

4.
The topography of lipopolysaccharide insertion into the outer membrane of Salmonella is discussed in context with a review of recent findings pertaining to general properties of the outer membrane, such as asymmetry and lateral mobility of surface components.  相似文献   

5.
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.  相似文献   

6.
Capitani G  Eidam O  Grütter MG 《Proteins》2006,65(4):816-823
Many pathogenic bacteria possess adhesive surface organelles (called pili), anchored to their outer membrane, which mediate the first step of infection by binding to host tissue. Pilus biogenesis occurs via the "chaperone-usher" pathway: the usher, a large outer membrane protein, binds complexes of a periplasmic chaperone with pilus subunits, unloads the subunits from the chaperone, and assembles them into the pilus, which is extruded into the extracellular space. Ushers comprise an N-terminal periplasmic domain, a large transmembrane beta-barrel central domain, and a C-terminal periplasmic domain. Since structural data are available only for the N-terminal domain, we performed an in-depth bioinformatic analysis of bacterial ushers. Our analysis led us to the conclusion that the transmembrane beta-barrel region of ushers contains a so far unrecognized soluble domain, the "middle domain", which possesses a beta-sandwich fold. Two other bacterial beta-sandwich domains, the TT0351 protein from Thermus thermophilus and the carbohydrate binding module CBM36 from Paenibacillus polymyxa, are possible distant relatives of the usher "middle domain". Several mutations reported to abolish in vivo pilus formation cluster in this region, underlining its functional importance.  相似文献   

7.
The formation of homo-oligomeric assemblies is a well-established characteristic of many soluble proteins and enzymes. Oligomerization has been shown to increase protein stability, allow allosteric cooperativity, shape reaction compartments and provide multivalent interaction sites in soluble proteins. In comparison, our understanding of the prevalence and reasons behind protein oligomerization in membrane proteins is relatively sparse. Recent progress in structural biology of bacterial outer membrane proteins has suggested that oligomerization may be as common and versatile as in soluble proteins. Here we review the current understanding of oligomerization in the bacterial outer membrane from a structural and functional point of view.  相似文献   

8.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

9.
Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt‐bridge R367–D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate. Proteins 2014; 82:2169–2179. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Aims:  Vibrio anguillarum is a universal marine pathogen causing vibriosis. Vibrio anguillarum encounters different osmolarity conditions between seawater and hosts, and its outer membrane proteins (OMPs) play a crucial role in the adaptation to changes of the surroundings. In the present study, proteomic approaches were applied to investigate the salt-responsive OMPs of V. anguillarum .
Methods and Results:  Lower salinity (0·85% NaCl) is more suitable for growth, survival and swimming motility of the bacterium. Comparative two-dimensional electrophoresis (2-DE) analysis reveals six differentially expressed protein spots among three different salinities, which were successfully identified as OmpU, maltoporin, flagellin B, Omp26La, Omp26La and OmpW respectively.
Conclusions:  OmpW and OmpU were highly expressed at 3·5% salinity, suggesting their role in the efficient efflux of NaCl. Maltoporin was downregulated in higher salinity, indicating that higher osmolarity inhibits carbohydrate transport and bacterial growth. Omp26La, the homologue of OmpV, functions as a salt-responsive protein in lower salinity.
Significance and Impact of the Study:  To the best of our knowledge, this is the first report describing salt stress-responsive proteins of V. anguillarum using proteomic approaches. Our results provide a useful strategy for delineating the osmoregulatory mechanism of the marine pathogens.  相似文献   

11.
A comparison of messenger RNA in X-ray crystal structures of 70S ribosomal complexes in the initiation, post-initiation and elongation states of translation shows distinct conformational differences in the exit (E) codon. Here, we present structural evidence indicating that, after the initiation event, the E codon nucleotides relax and form a classical A-helical conformation. This conformation is similar to that of the P and A codons, and is favourable for establishing Watson-Crick interactions with the anticodon of E-site transfer RNA.  相似文献   

12.
Almost all proteins that reside in the outer membrane (OM) of Gram-negative bacteria contain a membrane-spanning segment that folds into a unique β barrel structure and inserts into the membrane by an unknown mechanism. To obtain further insight into outer membrane protein (OMP) biogenesis, we revisited the surprising observation reported over 20 years ago that the Escherichia coli OmpA β barrel can be assembled into a native structure in vivo when it is expressed as two noncovalently linked fragments. Here, we show that disulfide bonds between β strand 4 in the N-terminal fragment and β strand 5 in the C-terminal fragment can form in the periplasmic space and greatly increase the efficiency of assembly of “split” OmpA, but only if the cysteine residues are engineered in perfect register (i.e., they are aligned in the fully folded β barrel). In contrast, we observed only weak disulfide bonding between β strand 1 in the N-terminal fragment and β strand 8 in the C-terminal fragment that would form a closed or circularly permutated β barrel. Our results not only demonstrate that β barrels begin to fold into a β-sheet-like structure before they are integrated into the OM but also help to discriminate among the different models of OMP biogenesis that have been proposed.  相似文献   

13.
The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins.  相似文献   

14.
Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM-Mdm10 machinery; however, different views exist on the function of the SAM-Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM-Mdm10 complex. Since the SAM-Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.  相似文献   

15.
  相似文献   

16.
Abstract Pseudomonas aeruginosa NCTC6750 and Escherichia coli K12 were used to study permeability of whole, intact cells to a series of labelled oligosaccharides. Stationary phase, oxygen depleted simple salts batch cultures were used. An efflux method was used to compare diffusion from cells of various 3H-labelled sugars (an homologous series based on isomaltitol) with diffusion of [14C]sucrose. Both plasmolysed and unplasmolysed cell suspensions were used. The data are consistent with an E. coli pore exclusion limit of approx. 833 Da for unplasmolysed cells and of about 670 Da for plasmolysed cells. For P. aeruginosa the data indicated a relatively small pore exclusion limit about the same size as sucrose with plasmolysis having little effect. These findings were confirmed with P. aeruginosa PAO1 grown in nutrient broth.  相似文献   

17.
Patch-clamping studies with native outer mitochondrial membranes show a complex behavior. In the range of potentials in which the polarity of the pipette is positive, the behavior resembles that of VDAC incorporated into bilayers. Accordingly, there is a decrease in conductance with voltage. An involvement of VDAC is also supported by responses of the patches to the presence of polyanion or treatment with succinic anhydride, both of which affect VDAC. In contrast, in the negative range of potential, the conductance of the patches generally increases with the magnitude of the voltage. The increase in conductance shows a biphasic time course which is consistent with a model in which channels are first activated (first phase) and then assembled into larger high-conductance channels (second phase). A variety of experiments support the notion that an assembly takes place. The time course of the conductance increase is consistent with formation of the second-phase channels from 6±1 subunits.  相似文献   

18.
A detailed structural analysis has been performed of the outer bacterial membrane of Pseudomonas aeruginosa using a parameterized classical simulation model (R. D. Lins and T. P. Straatsma, Biophysical Journal, 2001, Vol. 81, pp. 1037-1046) with modest modifications. The structural analysis of the membrane is presented and newly discovered characteristics of the membrane are discussed. Simulations indicate that the relative contribution of different ligands to calcium ion coordination varies across the membrane, while maintaining a constant average coordination number of 6.1. Water penetrates the surface of the membrane to a depth of about 30 A. The hydration of ions and phosphate groups is shown to depend on location within the membrane. A measure of saccharide residue orientation is defined and average orientations are presented. Saccharide residues possess varying degrees of motion with a trend of greater mobility at the membrane surface. However, their motion is limited and even in the membrane outer core region the average structure appears fairly rigid over a period of 1 ns.  相似文献   

19.
Kawakami K  Iwai M  Ikeuchi M  Kamiya N  Shen JR 《FEBS letters》2007,581(25):4983-4987
PsbY is one of the low molecular mass subunits of oxygen-evolving photosystem II (PSII). Its location, however, has not been identified in the current crystal structure of PSII. We constructed a PsbY-deletion mutant of Thermosynechococcus elongatus, crystallized, and analyzed the crystal structure of the mutant PSII dimer. The results obtained showed that PsbY is located in the periphery of PSII close to the alpha- and beta-subunits of cytochrome b559, which corresponded to an unassigned helix in the 3.7A structure of T. vulcanus or helix X2 in the 3.0A structure of T. elongatus. Our results also indicated that the C-terminal loop of PsbY is protruded toward the stromal side, instead of the lumenal side predicted previously.  相似文献   

20.
Abstract A lipopolysaccharide (LPS) fraction was isolated from Prochlorothrix hollandica by hot phenol/water extraction. Negatively stained preparations of an aqueous LPS dispersion showed the triple-layered appearance of the LPS aggregates. Glucose (main sugar), rhamnose, fucose, galactose, mannose, xylose, and 3- O -methyl-xylose were found as the constituents of the polysaccharide moiety. Glucosamine and the 3-hydroxy fatty acids, 3-OH-16:0, 3-OH-14:0, and the rarely detected iso-3-OH-15:0, constitute the lipid A of the LPS. l -glycero- d -manno-heptose and 3-deoxy- d -manno-2-octulosonic acid (dOclA), typical components of inner core oligosaccharides from enterobacterial LPS, were lacking in the isolated LPS fraction from Prochlorothrix hollandica .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号