首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Kolmogorov-type competition model featuring allocation profiles, gain functions, and cost parameters is examined. For plant species that compete for sunlight according to the canopy partitioning model [R.R. Vance and A.L. Nevai, Plant population growth and competition in a light gradient: a mathematical model of canopy partitioning, J. Theor. Biol. 245 (2007), pp. 210–219] the allocation profiles describe vertical leaf placement, the gain functions represent rates of leaf photosynthesis at different heights, and the cost parameters signify the energetic expense of maintaining tall stems necessary for gaining a competitive advantage in the light gradient. The allocation profiles studied here, being supported on three alternating intervals, determine “interior” and “exterior” species. When the allocation profile of the interior species is a delta function (a big leaf) then either competitive exclusion or coexistence at a single globally attracting equilibrium point occurs. However, if the allocation profile of the interior species is piecewise continuous or a weighted sum of delta functions (multiple big leaves) then multiple coexistence states may also occur.  相似文献   

2.
We examine the influence of canopy partitioning on the outcome of competition between two plant species that interact only by mutually shading each other. This analysis is based on a Kolmogorov-type canopy partitioning model for plant species with clonal growth form and fixed vertical leaf profiles (Vance and Nevai in J. Theor. Biol., 2007, to appear). We show that canopy partitioning is necessary for the stable coexistence of the two competing plant species. We also use implicit methods to show that, under certain conditions, the species’ nullclines can intersect at most once. We use nullcline endpoint analysis to show that when the nullclines do intersect, and in such a way that they cross, then the resulting equilibrium point is always stable. We also construct surfaces that divide parameter space into regions within which the various outcomes of competition occur, and then study parameter dependence in the locations of these surfaces. The analysis presented here and in a companion paper (Nevai and Vance, The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model, in review) together shows that canopy partitioning is both necessary and, under appropriate parameter values, sufficient for the stable coexistence of two hypothetical plant species whose structure and growth are described by our model. A. L. Nevai was supported in part by the National Institutes of Health, National Research Service Award (T32-GM008185) from the National Institute of General Medical Sciences (NIGMS).  相似文献   

3.

Background and Aims

While within-species competition for light is generally found to be asymmetric – larger plants absorbing more than proportional amounts of light – between-species competition tends to be more symmetric. Here, the light capture was analysed in a 5-year-old competition experiment that started with ten genotypes of the clonal plant Potentilla reptans. The following hypotheses were tested: (a) if different genotypes would do better in different layers of the canopy, thereby promoting coexistence, and (b) if leaves and genotypes with higher total mass captured more than proportional amounts of light, possibly explaining the observed dominance of the abundant genotypes.

Methods

In eight plots, 100 leaves were harvested at various depths in the canopy and their genotype determined to test for differences in leaf biomass allocation, leaf characteristics and the resulting light capture, calculated through a canopy model using the actual vertical light and leaf area profiles. Light capture was related to biomass to determine whether light competition between genotypes was asymmetric.

Key Results

All genotypes could reach the top of the canopy. The genotypes differed in morphology, but did not differ significantly in light capture per unit mass (Φmass) for leaves with the laminae placed at the same light levels. Light capture did increase disproportionately with leaf mass for all genotypes. However, the more abundant genotypes did not capture disproportionately more light relative to their mass than less-abundant genotypes.

Conclusions

Vertical niche differentiation in light acquisition does not appear to be a factor that could promote coexistence between these genotypes. Contrary to what is generally assumed, light competition among genetic individuals of the same species was size-symmetric, even if taller individual leaves did capture disproportionately more light. The observed shifts in genotype frequency cannot therefore be explained by asymmetric competition for light.Key words: Potentilla reptans, light, competition, symmetric, clonal, genotype, investment, petiole, canopy, allocation  相似文献   

4.
  • 1 The ‘big‐leaf’ approach to calculating the carbon balance of plant canopies is evaluated for inclusion in the ETEMA model framework. This approach assumes that canopy carbon fluxes have the same relative responses to the environment as any single leaf, and that the scaling from leaf to canopy is therefore linear.
  • 2 A series of model simulations was performed with two models of leaf photosynthesis, three distributions of canopy nitrogen, and two levels of canopy radiation detail. Leaf‐ and canopy‐level responses to light and nitrogen, both as instantaneous rates and daily integrals, are presented.
  • 3 Observed leaf nitrogen contents of unshaded leaves are over 40% lower than the big‐leaf approach requires. Scaling from these leaves to the canopy using the big‐leaf approach may underestimate canopy photosynthesis by ~20%. A leaf photosynthesis model that treats within‐leaf light extinction displays characteristics that contradict the big‐leaf theory. Observed distributions of canopy nitrogen are closer to those required to optimize this model than the homogeneous model used in the big‐leaf approach.
  • 4 It is theoretically consistent to use the big‐leaf approach with the homogeneous photosynthesis model to estimate canopy carbon fluxes if canopy nitrogen and leaf area are known and if the distribution of nitrogen is assumed optimal. However, real nitrogen profiles are not optimal for this photosynthesis model, and caution is necessary in using the big‐leaf approach to scale satellite estimates of leaf physiology to canopies. Accurate prediction of canopy carbon fluxes requires canopy nitrogen, leaf area, declining nitrogen with canopy depth, the heterogeneous model of leaf photosynthesis and the separation of sunlit and shaded leaves. The exact nitrogen profile is not critical, but realistic distributions can be predicted using a simple model of canopy nitrogen allocation.
  相似文献   

5.
This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO2 assimilation rates (Acrown) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.  相似文献   

6.
Summary Seedlings of five tropical trees, Cecropia obtusifolia, Myriocarpa longipes, Piper auritum, Senna multijuga and Trichospermum mexicanum, were grown both as individuals, and in competition with each other at ambient (350) and two levels of elevated CO2 (525 and 700 l l-1) for a period of 111 days. Growth, allocation, canopy architecture, mid-day leaf water potential and soil moisture content were assessed three times over this period for individually grown plants, and at the end of the experiment for competitively grown plants. In addition, leaf photosynthesis and conductance were assessed for the individually grown plants midway through the experiment, and light profile curves were determined for the competitive arrays at three stages of development. Elevated CO2 did not affect photosynthesis or overall growth of the individually-grown plants but did affect canopy architecture; mean canopy height increased with CO2 in Piper and Trichospermum and decreased in Senna. Stomatal conductance decreased slightly as CO2 increased from 350 to 525 l l-1 but this had no significant effect upon whole plant water use of leaf water potential. Soil moisture content for the individuals increased marginally as CO2 increased, but this did not occur in the competitive arrays. There was a marked effect of CO2 upon species composition of the competitive arrays; Senna decreased in importance as CO2 increased while Cecropia, Trichospermum and Piper increased in importance. Stepwise regression analysis using competitive performance as the independent variable, and the various morphological and physiological parameters measured on the individually grown plants as independent variables, suggested that canopy height was the single most important variable determining competitive ability. Also significant were photosynthetic rate (particularly at low light levels) and allocation to roots early in the experiment. Light profiles in the canopy revealed that less than 15% of incident light penetrated to the level of mean canopy height. Results suggest that competition for light was the major factor determining community composition, and that CO2 affected competitive outcome through its affect upon canopy architecture.This study was supported by a grant from the US Department of Energy  相似文献   

7.
Summary A multispecies canopy photosynthesis simulation model was used to examine the importance of canopy structure in influencing light interception and carbon gain in mixed and pure stands of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor of wheat. In the mixtures, the fraction of the simulated canopy photosynthesis contributed by wheat was found to decline during the growing season and this decline was closely related to reductions in the amount of leaf area in upper canopy layers. For both species in mixture and in monoculture, simulated photosynthesis was greatest in the middle or upper-middle canopy layers and sensitivity analyses revealed that canopy photosynthesis was most sensitive to changes in leaf area and leaf inclination in these layers. Changes in LAI and leaf inclination affected canopy carbon gain differently for mixtures and monocultures, but the responses were not the same for the two species. Results from simulations where the structural characteristics of the two species were substituted indicated that species differences in leaf inclination, sheath area and the fraction of leaf area alive were of minor consequence compared with the differences in total leaf area in influencing relative canopy carbon gain in mixtures. Competition for light in these species mixtures appears to be influenced most by differences in the positioning of leaf area in upper canopy layers which determines, to a great extent, the amount of light intercepted.  相似文献   

8.
Can a difference in the heights at which plants place their leaves, a pattern we call canopy partitioning, make it possible for two competing plant species to coexist? To find out, we examine a model of clonal plants living in a nonseasonal environment that relates the dynamical behavior and competitive abilities of plant populations to the structural and functional features of the plants that form them. This examination emphasizes whole plant performance in the vertical light gradient caused by self-shading. This first of three related papers formulates a prototype single species Canopy Structure Model from biological first principles and shows how all plant properties work together to determine population persistence and equilibrium abundance. Population persistence is favored, and equilibrium abundance is increased, by high irradiance, high maximum photosynthesis rate, rapid saturation of the photosynthetic response to increased irradiance, low tissue respiration rate, small amounts of stem and root tissue necessary to support the needs of leaves, and low density of leaf, stem, and root tissues. In particular, equilibrium abundance decreases as mean leaf height increases because of the increased cost of manufacturing and maintaining stem tissue. All conclusions arise from this formulation by straightforward analysis. The argument concludes by stating this formulation's straightforward extension, called a Canopy Partitioning Model, to two competing species.  相似文献   

9.
Size asymmetry in plant light acquisition complicates predictions of competitive outcomes in light-limited communities. We present a mathematically tractable model of asymmetric competition for light and discuss its implications for predicting outcomes of competition during establishment in two-, three-, and many-species communities. In contrast to the resource-reduction model of symmetric competition for a single resource, the model we present predicts that outcomes of asymmetric competition for light will sometimes depend on the timing of establishment and the consequent hierarchy among species in canopy position. Competitive outcomes in the model depend on the minimum light requirements (L(c)) and self-shading of species lower in the canopy compared to the light available (L(out)(*)) beneath species higher in the canopy. Succession progresses towards species with decreasing values for L(c), but arrested successions occur when initial dominants have relatively high values for L(c) but low values for L(out)(*), leading to founder control. A theoretically limitless number of species may coexist in competition for light when dominance is founder controlled. These model predictions have implications for an array of applied ecological questions, including methods to control invasive species in light-limited restored ecosystems.  相似文献   

10.

Background and Aims

The coexistence of forest tree species has often been linked to differences among species in terms of their response to light availability during the regeneration stage. From this perspective, species coexistence results from growth–growth or mortality–growth trade-offs along spatial light gradients. Experimental evidence of growth–growth trade-offs in natural conditions is sparse due to various confounding factors that potentially hinder the relationship. This study examined growth hierarchies along light gradients between two tree species with contrasting shade tolerance by controlling potential confounding factors such as seedling size, seedling status, seedling density and species composition.

Methods

Natural regenerated shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings were used, and growth rankings over a 4-year period were compared in 8- to 10-year-old tree seedlings.

Key results

No rank reversal occurs between the two species along the light gradient, or along the density, mixture or seedling size gradients. The shade-tolerant species was always the more competitive of the two. Pronounced effects of initial size on seedling growth were observed, whereas the effects of light and competition by neighbours were of secondary importance. The paramount effect of size, which results from the asymmetric nature of interseedling competition, gives a strong advantage to tall seedlings over the long term.

Conclusions

This study extends previous efforts to identify potential drivers of rank reversals in young tree mixtures. It does not support the classical assumption that spatial heterogeneity in canopy opening explains the coexistence of the two species studied. It suggests that spatial variation in local size hierarchies among seedlings that may be caused by seedling emergence time or seedling initial performance is the main driver of the dynamics of these mixed stands.  相似文献   

11.
An 11-year competition experiment among combinations of six prairie perennial plant species showed that resource competition theory generally predicted the long-term outcome of competition. We grew each species in replicated monocultures to determine its requirements for soil nitrate (R*) and light (I*). In six pairwise combinations, the species with the lower R* and I* excluded its competitor, as predicted by theory. In the remaining two pairwise combinations, one species had a lower R*, and the second had a lower I*; these species pairs coexisted, although it is unclear whether resource competition alone was responsible for their coexistence. Smaller differences in R* or I* between competing species led to slower rates of competitive exclusion, and the influence of R* differences on the rate of competitive exclusion was more pronounced on low-nitrogen soils, while the influence of I* differences was more pronounced on high-nitrogen (low-light) soils. These results were not explained by differences in initial species abundances or neutrality. However, only a few of our paired species coexisted under our experimentally imposed conditions (homogeneous soils, high seeding densities, minimal disturbance, regular water, and low herbivory levels), suggesting that other coexistence mechanisms help generate the diversity observed in natural communities.  相似文献   

12.
DeLong JP  Vasseur DA 《PloS one》2012,7(1):e30081
Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states.  相似文献   

13.
Han Olff 《Oecologia》1992,89(3):412-421
Summary Recent discussions on determinants of competitive success during succession require the study of the combined effect of light and nutrient availability on growth and allocation. These effects can be used to predict the outcome of competition at changing resource availabilities. This work is part of a study on the successional sequence in permanent grassland starting after fertilizer application is stopped, but with continued mowing, in order to restore former species-rich communities. This yields a successional sequence which proceeds from grasslands with a high nutrient availability and a closed canopy, to grasslands with a low nutrient availability and an open canopy. If allocation is related to competitive ability, species from the productive stages would be expected to allocate more biomass and nitrogen to leaves, which could make them better competitors for light, while species from the unproductive stages would allocate more biomass to roots, which could make them better nutrient competitors. This study reports on growth, specific leaf area (SLA), vertical display of leaves, and allocation of biomass and nitrogen of six grassland species from this successional sequence at 16 combinations of light and nutrient supply. Species from the poorer successional stages reached a lower final dry weight than species from the richer stages, over all treatment combinations. The experimental design made it possible to test for unique effects of the resource ratio effect of light and nutrients on allocation characteristics. This resource-ratio effect was defined as the ratio light intensity/(light intensity + nutrient supply rate), using standardized levels for the treatments. The within-species variation (plasticity) in both allocation of dry matter and nitrogen was linearly related to this resource-ratio effect. Some interspecific differences in this relationship were found which could be related to the position of the species along the successional gradient. However, the range of plasticity in allocation pattern expressed within each species was much larger than the differences between species. It was concluded that allocation differences between these grassland species are relatively unimportant, given the large amount of plasticity in these traits. Interspecific differences in SLA and vertical stature seemed to be more important in explaining the position of species along the successional gradient.  相似文献   

14.
Abstract. In temperate grasslands, the relative importance of above‐ground competition for light compared to below‐ground competition for water and nutrients is hypothesized to increase with increasing precipitation. Thus, competition for light is likely to exert an increasing influence on canopy structure and species composition as precipitation increases. We quantified canopy structure, light availability and changes in species composition at seven sites across the central grassland region of the United States to determine how these properties change across a precipitation gradient. Across the region, there was a disproportionate increase in leaf area and canopy height with increasing precipitation, indicating that plants become taller and leafier across the gradient. Leaf area index increased by a factor of 12 across the gradient while above‐ground net primary productivity increased by a factor of only 5.5. As precipitation increased, there was decreased light availability at the soil surface, increased seasonal variability in light transmission, increased biomass and leaf area at higher canopy layers and an increased proportion of tallstatured species. These observed changes in canopy structure support the prediction that competition for light increases in importance with increasing precipitation.  相似文献   

15.
对于非捕食 被捕食(食饵)生态系统,强弱物种之间存在一定的竞争影响.在不考虑栖息地毁坏的情况下,引进双向竞争机制,将Tilman的单向竞争模式推广为n集合种群双向竞争模型,并对6-集合种群的竞争动态进行了计算机模拟研究.结果表明,在平衡态,种群竞争共存的条件是其竞争能力与扩散能力呈现指数型负相关关系,竞争的结果使物种的强弱序列发生变化;物种竞争排除与共存受迁移扩散能力和竞争能力影响很大,在局域斑块上竞争排斥的集合种群在广域尺度上可以竞争共存,即逃亡共存.  相似文献   

16.
Mixtures and monocultures of wheat (Triticum aestivum) and wild oat (Avena fatua), a common weedy competitor of wheat, were exposed to enhanced solar UV-B radiation simulating a 20% reduction in stratospheric ozone to assess the timing and seasonal development of the UV-B effects on light competition in these species. Results from two years of field study revealed that UV-B enhancement had no detectable effect on the magnitude or timing of seedling emergence in either species. End-of-season measurements showed significant UV-B inhibition of leaf insertion height in wild oat in mixture and monoculture in the second year (irrigated year) but not in the first year (drought year). Leaf insertion height of wheat was not affected by UV-B in either year. The UV-B treatment had no detectable effect on monoculture or total (combined species) mixture LAI but did significantly increase (5–7%) the fractional contribution of wheat to the mixture LAI after four weeks of growth in both years. In addition, the UV-B treatment had subtle effects on LAI height profiles with early season mixtures showing significant reductions in wild oat LAI in lower canopy layers in both years while midseason Year 2 mixtures showed significant reductions in wild oat LAI in upper canopy layers. The changes in canopy structure were found to significantly increase (6–7%) the proportional simulated clear sky canopy photosynthesis and light interception of wheat in mixture. These findings, and others, indicate that the effects of UV-B enhancement on competition are realized very early in canopy development and provide additional support for the hypothesis that UV-B enhancement may shift the balance of competition between these species indirectly by altering competitive interactions for light.  相似文献   

17.
Light partitioning in experimental grass communities   总被引:1,自引:0,他引:1  
Through complementary use of canopy space in mixtures, aboveground niche separation has the potential to promote species coexistence and increase productivity of mixtures as compared to monocultures. We set up an experiment with five perennial grass species which differed in height and their ability to compete for light to test whether plants partition light under conditions where it is a limiting resource, and if this resource partitioning leads to increased biomass production in mixtures (using relative yield-based methods). Further, we present the first application of a new model of light competition in plant communities. We show that under conditions where biomass production was high and light a limiting resource, only a minority of mixtures outperformed monocultures and overyielding was slight. The observed overyielding could not be explained by species differences in canopy structure and height in monoculture and was also not related to changes in the canopy traits of species when grown in mixture rather than monoculture. However, where overyielding occurred, it was associated with higher biomass density and light interception. In the new model of competition for light, greater light use complementarity was related to increased total energy absorption. Future work should address whether greater canopy space-filling is a cause or consequence of overyielding.  相似文献   

18.
In vegetative canopies of many species, the vertical gradient of lamina nitrogen concentration (NW) parallels the profile of light distribution in such a way that the actual nitrogen partitioning approaches the optimum pattern for canopy photosynthesis. This paper evaluates the hypothesis that a strong sink for nitrogen, viz. growing grain, affects the pattern of lamina nitrogen distribution usually described for vegetative canopies. The light and NW profiles of sunflower (Helianthus annuus L.) crops were characterised from anthesis to physiological maturity. The factorial combination of two plant populations (2.4 and 4.8 plants m–2) and two levels of nitrogen supply (0 and 5 g N m–2) were the sources of variation for NW and light profiles. Before the onset of nitrogen accumulation in grain, the pattern of NW was similar to that described for other species and it was related to the distribution of light in the canopy. Important changes in the profile of NW occurred during grain filling that were unrelated to the light regime. Nitrogen was mobilised from leaves in all positions in the canopy and the rate of NW change was greater in leaves closer to the grain, which were also the leaves where nitrogen was more concentrated. It is concluded that the physiological mechanisms involved in determining the distribution of leaf nitrogen in vegetative canopies do not apply to sunflower during grain filling.  相似文献   

19.
Development of the Monsi-Saeki theory on canopy structure and function   总被引:11,自引:0,他引:11  
Hirose T 《Annals of botany》2005,95(3):483-494
BACKGROUND AND AIMS: Monsi and Saeki (1953) published the first mathematical model of canopy photosynthesis that was based on the light attenuation within a canopy and a light response of leaf photosynthesis. This paper reviews the evolution and development of their theory. SCOPE: Monsi and Saeki showed that under full light conditions, canopy photosynthesis is maximized at a high leaf area index (LAI, total leaf area per unit ground area) with vertically inclined leaves, while under low light conditions, it is at a low LAI with horizontal leaves. They suggested that actual plants develop a stand structure to maximize canopy photosynthesis. Combination of the Monsi-Saeki model with the cost-benefit hypothesis in resource use led to a new canopy photosynthesis model, where leaf nitrogen distribution and associated photosynthetic capacity were taken into account. The gradient of leaf nitrogen in a canopy was shown to be a direct response to the gradient of light. This response enables plants to use light and nitrogen efficiently, two resources whose supply is limited in the natural environment. CONCLUSION: The canopy photosynthesis model stimulated studies to scale-up from chloroplast biochemistry to canopy carbon gain and to analyse the resource-use strategy of species and individuals growing at different light and nitrogen availabilities. Canopy photosynthesis models are useful to analyse the size structure of populations in plant communities and to predict the structure and function of future terrestrial ecosystems.  相似文献   

20.
BACKGROUND AND AIMS: Plants adjust the distribution of photosynthetic capacity and chlorophyll to canopy density. The importance of the gradient in the red : far-red ratio (R : FR) relative to the irradiance gradient was studied for its perception with respect to this partitioning of photosynthetic resources. Whether the relative importance of these two signals varied between six species of different growth habit (Phaseolus vulgaris, Lysimachia vulgaris, Hedera helix, Ficus benjamina, Carex acutiformis and Brachypodium pinnatum) was investigated further. METHODS: Single leaves of plants were shaded in daylight by a spectrally neutral filter or a leaf. In another experiment, leaves were treated with supplemental FR. In most cases, treatment effects were evaluated after 2 weeks. KEY RESULTS: Nitrogen and photosynthetic capacity (Amax) per leaf area, parameters pertaining to between-leaf resource partitioning, were strongly reduced in neutral shade but not additionally by spectral leaf shade. Supplemental FR reduced these parameters also, except in Carex. Acceleration of induction of senescence was observed in spectral leaf shade in primary bean leaves. Amax per unit chlorophyll, a parameter pertaining to within-leaf resource partitioning, was reduced in neutral shade, but not in spectral leaf shade or supplemental FR. CONCLUSIONS: Signalling mechanisms associated with perception of the R : FR gradient in canopies were less important than those associated with the irradiance gradient for between-leaf and within-leaf partitioning of photosynthetic resources. The relative importance of the signals differed between species because Carex was the only species for which no indications were found for an involvement of the spectral gradient in perception of canopy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号