首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pork odour is to a great extent affected by the presence of malodorous compounds, mainly androstenone and skatole. The present review outlines the current state of knowledge about factors involved in the regulation of androstenone and skatole in entire male pigs. Androstenone is a pheromonal steroid synthesised in the testes and metabolised in the liver. Part of androstenone accumulates in adipose tissue causing a urine-like odour. Skatole is produced in the large intestine by bacterial degradation of tryptophan and metabolised by hepatic cytochrome P450 enzymes and sulphotransferase. The un-metabolised part accumulates in adipose tissue, causing faecal-like odour. Androstenone levels are mostly determined by genetic factors and stage of puberty, whereas skatole levels in addition to genetic background and hormonal status of the pigs are also controlled by nutritional and environmental factors. To reduce the risk of tainted carcasses entering the market, male pigs are surgically castrated in many countries. However, entire males compared to castrates have superior production characteristics: higher growth rate, better feed efficiency and leaner carcasses. Additionally, animal welfare aspects are currently of particular importance in light of increasing consumers' concerns. Nutrition, hormonal status, genetic influence on boar taint compounds and the methods to develop genetic markers are discussed. Boar taint due to high levels of skatole and androstenone is moderately heritable and not all market weight entire males have boar taint; it should thus be possible to select for pigs that do not have boar taint. In these studies, it is critical to assess the steroidogenic potential of the pigs in order to separate late-maturing pigs from those with a low genetic potential for boar taint. A number of candidate genes for boar taint have been identified and work is continuing to develop genetic markers for low boar taint. More research is needed to clarify the factors involved in the development of boar taint and to develop additional methods to prevent the accumulation of high concentrations of skatole and androstenone in fat. This review proposes those areas requiring further research.  相似文献   

2.
Production of entire male pigs could be a future strategy for organic pig production. However, production of entire males leads to increased risk of carcasses with elevated boar taint levels. It is hypothesized that skatole levels in pig meat are affected by faecal soiling and that organic housing facilities can increase the risk of pigs being heavily soiled. Therefore, the overall aim of this study was to investigate if increased pig and pen soiling increases skatole concentration in entire male pigs. In five herds, 1174 organic entire male pigs were reared in four batches across two seasons, summer and winter. Measurements of pig and pen soiling, as well as fat skatole and androstenone concentration and human nose sensory tests of fat odour, were performed. Skatole and androstenone concentrations varied greatly within and between herds with a 10% and 90% percentile for the overall population of 0.02 and 2.25 µg/g for skatole and 0.53 and 4.84 µg/g for androstenone. Human nose positive tests averaged 18.3% with great variation between herds and seasons. Pen soiling had significant effects on pig soiling. Moreover, outdoor pen soiling significantly affected skatole concentration in interactions with herd and season (P<0.001 and P=0.003) and affected human nose positive risk in interaction with herd (P=0.005). Soiling on indoor pen areas did not affect skatole levels and no effect on androstenone was found for any pen area. Soiling of pigs affected both skatole and androstenone levels, with the size of the head and abdomen body areas covered in manure showing significant positive effects on skatole concentration. No effect of density of the manure layer was found on either boar taint measure. Herd significantly affected both skatole and androstenone in fat as well as the human nose positive risk. The human nose test revealed no effect from pig soiling. A large variation in the different boar taint measures was found for both high and low scores of pen and pig soiling, and only a small difference in skatole and androstenone concentrations between the high and low soiling categories was found. Therefore, while increasing the hygiene management could be a strategy for reducing boar taint in production of organic entire male pigs, it should be emphasized that other factors would also need to be considered.  相似文献   

3.
The aim of this study was to evaluate the performance of various boar taint detection methods, measure the relationship between them and identify possible points of improvement for boar taint detection. The methods used to evaluate boar taint in the carcasses of 448 entire male pigs and 17 barrows were the hot iron method (n = 442), a standardised (n = 323) and home (n = 58) consumer meat-evaluation panel, an expert panel assessment of meat and fat (n = 464) and laboratory analysis of skatole, androstenone and indole in fat (n = 464). The axillary odour of a number of slaughtered entire male pigs was also investigated (n = 231). As correlation coefficients were generally weak, a positive result for one of these detection methods did not per se result in a positive result for all other methods. Results of one detection method could not be generalised. The choice to use one or more detection methods deserves consideration depending on the aim of the study. In this paper, we suggest some possible improvements for evaluating boar taint with a consumer panel based on our results and experience. The home consumer evaluation was correlated with the concentration of indole (r = 0.27) but not with skatole or androstenone. We therefore recommend that lab analyses include indole testing. The hot iron method seems to be an easy and fast detection method, which yields comparable or better correlation coefficients with the other detection methods than an expert panel evaluating fat samples. However, the reliability of the hot iron method depends on the training and reliability of one or two assessors. Efforts should be made to further optimise this method by evaluating the effect of testing conditions. The axillary odour score was moderately correlated with the other detection methods (up to 0.32). More research is needed to evaluate the possibilities of axillary odour as a boar taint detection method.  相似文献   

4.
To investigate the extent to which the level of androstenone and skatole decreases with a decrease in live weight and/or age at slaughter of entire male pigs produced under organic standards, 1174 entire male pigs were raised in parallel in five organic herds, distributed across four batches in summer and winter. The median androstenone level was high for organic entire male pigs (1.9 µg/g), but varied greatly both within and between herds. Median skatole level was 0.05 µg/g, also with a wide range both within and between herds. Decreasing live weight over the range of 110±15.6 kg s.d. was found to decrease androstenone as well as skatole concentration, however, with different patterns of association. Age did not have significant direct effect on either androstenone or skatole levels. Androstenone levels were higher during winter than summer (P<0.0001), but no difference in skatole was found between seasons. The study concludes that decreasing live weight at slaughter could be an applicable management tool to reduce risk of boar taint and the level of tainted carcasses for a future production of entire male pigs within the organic pig production system, although further studies are needed as great variation in boar taint was found also for low weight animals.  相似文献   

5.
Boar taint is mainly caused by two components; skatole (3-methylindole) and androstenone. By castrating the male pigs, boar taint will be avoided. In Norway, castration of pigs will no longer be permitted after 2009. This represents a substantial cost for the Norwegian swine production. Other Norwegian studies have shown that a large proportion of pigs are above the consumer detection limits for these two chemical components. The obvious question for the geneticist arises: Is it possible to select against skatole and androstenone in a breeding programme? Skatole is produced in the gut by bacteria. It is then absorbed in the blood stream. Skatole is either metabolised in the liver or transported and stored in fatty tissue. Androstenone is produced in the testis, and its biochemical pathway is related to the pathway of testosterone. In this study, fatty tissue was collected from the carcasses of Norwegian Landrace and Duroc boars, and analysed for androstenone and skatole. The length of glandula bulbourethralis was measured on the same animals, as this is regarded as a good indicator of sexual maturation. Heritabilities of androstenone and skatole were substantial. The two components were genetically correlated. Sexual maturation was also highly heritable. However, correlations to both androstenone and skatole were significantly unfavourable.  相似文献   

6.
Genetically reducing boar taint using low-taint lines is considered the most sustainable and economic long-term alternative to surgical castration of male pigs. Owing to the high heritability of the main boar taint components (androstenone, skatole and indole), breeding is an excellent tool for reducing the number of tainted carcasses. To incorporate boar taint into breeding programmes, standardized performance testing is required. The objective of this study was to develop and formally present a performance test for the main boar taint compounds on live breeding candidates. First, a standardized performance test for boar taint was established. A biopsy device was developed to extract small tissue samples (200 to 300 mg) from breeding candidates. Quantification of boar taint components from these small samples using specialized chemical extraction methods proved accurate and repeatable (r = 0.938). Following establishment of the method, biopsy samples of 516 live boars (100 to 130 kg live weight) were collected in the second step. Various mixed linear models were tested for each boar taint compound; models were ranked in terms of their information content. Pedigree information of 2245 ancestors of biopsied animals was included, and genetic parameters were estimated using univariate and multivariate models. Androstenone (in μg/g liquid fat (LF): mean = 0.578, σ = 0.527), skatole (in μg/g LF: mean = 0.033, σ = 0.002) and indole (in μg/g LF: mean = 0.032, σ = 0.002) levels obtained by biopsy were plausible. Heritability estimates for androstenone calculated with univariate (0.453) and multivariate (0.452) analyses were comparable to those in the literature. Heritabilities for skatole (0.495) and indole (0.550) were higher than that for androstenone. Genetic and phenotypic correlations were similar to those published previously. Our results show that data on boar taint compounds from small adipose samples obtained by biopsy provide similar genetic parameters as that described in the literature for larger samples and are therefore a reliable performance test for boar taint in live breeding candidates.  相似文献   

7.

Background

Boar taint is an offensive urine or faecal-like odour, affecting the smell and taste of cooked pork from some mature non-castrated male pigs. Androstenone and skatole in fat are the molecules responsible. In most pig production systems, males, which are not required for breeding, are castrated shortly after birth to reduce the risk of boar taint. There is evidence for genetic variation in the predisposition to boar taint.A genome-wide association study (GWAS) was performed to identify loci with effects on boar taint. Five hundred Danish Landrace boars with high levels of skatole in fat (>0.3 μg/g), were each matched with a litter mate with low levels of skatole and measured for androstenone. DNA from these 1,000 non-castrated boars was genotyped using the Illumina PorcineSNP60 Beadchip. After quality control, tests for SNPs associated with boar taint were performed on 938 phenotyped individuals and 44,648 SNPs. Empirical significance thresholds were set by permutation (100,000). For androstenone, a ‘regional heritability approach’ combining information from multiple SNPs was used to estimate the genetic variation attributable to individual autosomes.

Results

A highly significant association was found between variation in skatole levels and SNPs within the CYP2E1 gene on chromosome 14 (SSC14), which encodes an enzyme involved in degradation of skatole. Nominal significance was found for effects on skatole associated with 4 other SNPs including a region of SSC6 reported previously. Genome-wide significance was found for an association between SNPs on SSC5 and androstenone levels and nominal significance for associations with SNPs on SSC13 and SSC17. The regional analyses confirmed large effects on SSC5 for androstenone and suggest that SSC5 explains 23% of the genetic variation in androstenone. The autosomal heritability analyses also suggest that there is a large effect associated with androstenone on SSC2, not detected using GWAS.

Conclusions

Significant SNP associations were found for skatole on SSC14 and for androstenone on SSC5 in Landrace pigs. The study agrees with evidence that the CYP2E1 gene has effects on skatole breakdown in the liver. Autosomal heritability estimates can uncover clusters of smaller genetic effects that individually do not exceed the threshold for GWAS significance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-424) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
'Boar taint' is a strong perspiration-like, urine-like unpleasant odour given off upon heating or cooking of meat from some intact (uncastrated) male pigs. Data from the F(2) generation of a Large White (LW) x Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for traits associated with boar taint. Fat samples from 178 intact male pigs slaughtered at 85 +/- 5 kg were analysed for the major contributors to boar taint (androstenone, indole and skatole). Fat and lean samples from cooked meat were scored for boar, abnormal and pork flavour and odour by a trained sensory panel (SP). A scan with 117 markers covering the whole genome was performed in the F(2) individuals, together with their F(1) parents and purebred grandparents. At the 5% chromosomal significance threshold (approximately equal to the genome-wide suggestive significance threshold), QTL were detected for the laboratory estimate of androstenone on chromosomes 2, 4, 6, 7 and 9. However, only on chromosome 6 were there QTL for boar flavour (BF) traits in the same or adjacent marker intervals as a QTL for the laboratory estimate of androstenone. On chromosome 14, QTL were detected for the laboratory estimates of indole and skatole, the SP score for skatole and the scores for BF in lean and BF in fat. In all five cases, the MS allele generally increased the estimate or score, compared with the LW allele, but it appeared that desirable and undesirable alleles were present in both breeds. This locus on chromosome 14 has considerable potential for use to reduce the incidence of boar taint, especially if further research can identify the causative polymorphism or strongly associated markers.  相似文献   

10.
Boar taint is an unpleasant taste and odor that can occur in entire male pigs and is caused by androstenone, skatole, and to a lesser extent indole accumulating in fat tissue. In the present observational study, we evaluated an extensive list of such potential risk factors which influence boar taint: social hierarchy and puberty attainment, housing, health, preslaughter conditions, season, feed, carcass composition, slaughter weight or age, and breed. Details on these factors were collected by interviews with the participating farmers, observations on each farm by trained observers and farmers, as well as slaughterhouse data. Twenty-two farms (in West- and East-Flanders, ranging from 160 to 600 sows, selected on suitability) raising entire male pigs were included in the study to evaluate the link between boar taint and potential risk factors related to the farm and slaughter batch (114 slaughter batches and 16 791 entire male pigs in total). Average olfactory boar taint prevalence was 1.8 ± 0.8%. Boar taint prevalence varied also within farms up to a maximum range between slaughter batches of 9.1% which suggests an effect of factors varying between slaughter batches such as season or other variables varying between slaughter batches. Less aggressive behavior at the end of fattening as well as lower skin lesion scores at fattening as well as at slaughter could be associated with less boar taint. The same might be said for sexual behavior, though less convincingly from this study. Measures that reduce aggression and stress have therefore have the potential to lower boar taint prevalence. The same might be said for sexual behavior, though less convincingly from this study. Furthermore, boar taint prevalence was generally higher in winter than in summer, which is relevant from a planning perspective for the slaughterhouses to seek alternative markets. Finally, increased CP gave significantly lower boar taint prevalences. This may to some extent be explained by the negative association between boar taint and lean meat percentage, as increased dietary CP levels promote the carcass lean meat percentages which can then be associated with lower boar taint levels.  相似文献   

11.
Piétrain (P), Large White (LW) and Belgian Landrace stress negative (BN) boars were slaughtered at 50, 70, 90 or 110 kg live weight to investigate breed differences and the effect of slaughter weight on boar taint prevalence. Boar taint was quantified by four different methodologies: sensory evaluation of neckfat heated with a hot iron in the slaughterhouse, sensory evaluation of meat by consumer panels, sensory evaluation of fat and meat by expert panels and laboratory analysis of indole, skatole and androstenone in backfat. Skatole levels in backfat were significantly higher for LW and BN than for P boars. The androstenone levels and the hot iron method revealed a significant interaction between breed and slaughter weight. On the other hand, experts detected an effect of weight on the androstenone odour perception, which was significantly higher in fat from boars slaughtered at 90 kg compared with 50 kg, and significantly higher in meat from boars slaughtered at 110 kg compared with 50 kg. Consumers did not detect differences in the sensory characteristics among breeds or slaughter weight. These results indicate opportunities to minimise the risk of boar taint in entire male pigs by carefully selecting a combination of breed and slaughter weight. Along with the optimal slaughter weight, the effectiveness of reducing boar taint by lowering slaughter weight appeared to be breed dependent.  相似文献   

12.
There is a commitment by the European pig sector to ban surgical castration of male piglets in the European Union in 2018. One alternative to castration is to raise entire male pigs, with an increased risk of boar taint. A field study was performed to: (1) evaluate inter- and intra-farm variation in boar taint prevalence, (2) investigate factors measured at slaughter influencing boar taint and (3) evaluate the relationship between sensorial scoring by a trained panel and the concentration of boar taint components. From 34 farms, neck fat samples were collected from all entire male pigs in at least two slaughter batches per farm (78 batches; 9167 animals). In addition to olfactory boar taint analysis, data were also collected on fresh skin lesions (score 0 to 3) at the slaughter line, slaughter weight, lean meat percentage, duration of transport, time spent in lairage, total delivery duration, day length, shortening of days and outdoor mean temperature. Using the hot iron method, neck fat samples were scored (eight-point scale) for boar taint. Average boar taint prevalence (score ≥3) was 5.6±2.5% and the mean difference between the maximum and minimum prevalence per farm was 4.3±3.2%. Androstenone (AND), skatole (SKA) and indole concentrations were measured for a subset (n=254) of the samples. According to binomial univariate mixed models, entire male pigs with a higher skin lesion score had higher odds of having boar taint (P=0.031), as did fatter entire male pigs (P<0.001). In the binomial multivariate mixed model lean meat percentage (P<0.001) and outdoor mean temperature (P=0.005) remained as only significant factors. Based on our results, we can conclude that these statistically significant at least partially influence the prevalence of boar taint. According to the binomial univariate mixed models SKA concentration in liquid fat seems a better predictor for boar taint than AND. There were no significant synergetic effects between boar taint compounds.  相似文献   

13.
Boar taint, an off-odor and an off-flavor in the meat from some uncastrated male pigs, is due to high levels of the testicular steroid hormone, androstenone, and the indole, skatole. Thus far, there are no known methods for controlling both androstenone and skatole through dietary means. We tested the adsorbent agents, cholestyramine (CH), activated carbon (AC), tween-60 (Tween), bentonite (BNT) and polyvinylpolypyrrolidone (PVPP) for binding androstenone, estrone (E(1)), estrone sulfate (E(1)S) and skatole from buffer solutions in an in vitro system. The goal was to determine the potential utility of these binding agents as feed additives to control boar taint. Michaelis-Menten analysis was utilized to determine the effectiveness of the adsorbents. At pH 7.4, E(1)S was bound to AC and CH with the highest B(max) (maximum binding), whereas Tween and AC had the greatest B(max) for E(1). The B(max) for skatole at pH 7.4 was highest for AC, CH and PVPP. AC had a higher B(max) for androstenone than CH and Tween. The B(max) values at pH 3.0 with E(1)S for AC and CH were essentially 100%, whereas the binding of Tween to E(1)S at pH 3.0 decreased by 49.5% from binding at pH 7.4 (P < 0.05). The Ad(int) values, which represent efficiency of binding, illustrated that AC bound E(1), androstenone and skatole with greater efficiency than the other binding agents at pH 7.4, whereas AC bound E(1)S as efficiently as CH. We conclude that AC was the most effective adsorbent agent for binding E(1), E(1)S, androstenone and skatole in vitro, followed by CH, Tween, PVPP and lastly BNT. These adsorbent agents may be useful for binding boar taint compounds in in vivo studies to decrease the risk of boar taint.  相似文献   

14.
Breeding entire males is an alternative to surgical castration to improve their welfare. However, entire males may have a major quality defect called boar taint. Boar taint is partly due to the presence of androstenone in fat. In this study, we estimated the genetic parameters between androstenone and production traits to evaluate the consequences of selection against boar taint for traits of interest. We focused on growth traits, meat quality, lesions, hormone levels and computerised tomography measurements in purebred Piétrain (P) or Piétrain cross Large White (X) entire males. The number of measured animals varied from 670 P and 734 X for hormones concentrations to 553 P and 645 X for computerised tomography measurements. Skin lesions were measured on live pigs shortly after mixing, at the end of the fattening period, and on carcasses. Heritabilities of traits measured by tomography ranged from low to high: femur density (P: 0.34, X: 0.69), loin eye area (P: 0.53, X: 0.88) and loin eye density (P: 0.12, X: 0.18). The mean number of lesions at each stage was lower in purebred pigs than in crossbreds (entering the fattening stage 4.01 in P and 4.68 in X; before slaughter 3.72 in P and 4.22 in X; on carcass 4.50 in P and 4.96 in X). We also observed a decrease in the average number of lesions between the two stages in live pigs. We found high genetic correlations between stages in purebred pigs (0.74 to 0.76) but low correlations (−0.30 to 0.29) in crossbred pigs. Selection aiming to decrease fat androstenone is feasible (h2 = 0.57 in P and h2 = 0.71 in X). It would have overall positive effects on meat production and quality traits. Selection aiming to reduce plasma oestradiol would strongly reduce the level of fat androstenone (rg = 0.89 in P and rg = 0.84 in X). Selection against oestradiol is easier and less invasive since it would only require a blood sample rather than a fat biopsy in live animals.  相似文献   

15.
Boar taint is a quality defect in meat, related to accumulation of skatole and androstenone in male pigs. The levels of skatole and its main metabolites in plasma and urine samples were measured with a validated liquid chromatography-MS method and related to activity of hepatic cytochrome P450 (CYP450) in order to identify ‘fast metabolizing’ pigs. Urine (n=46), blood (n=12), liver (n=25) and adipose tissue (n=46) were sampled from a total of 46 entire male pigs. Skatole levels in fat were negatively correlated to CYP2E1 activity and positively to 3-hydroxy-3-methyloxindole (HMOI), indole-3-carboxylic acid (ICA) and 2-aminoacetophenone in urine. HMOI and ICA levels in urine were the best predictors of high skatole levels in fat. In summary, the present study provided further evidence for the key role of CYP2E1 in skatole metabolism and suggested that measurement of HMOI and/or ICA in urine might provide information about skatole levels in live pigs.  相似文献   

16.
A rapid high-performance reversed-phase liquid chromatographic method for the simultaneous quantitative determination of the main boar taint compounds androstenone, skatole (3-methylindole) and indole, in back fat from pigs has been developed. The compounds are extracted by a simple homogenisation of adipose tissue in methanol; interfering lipids are removed by precipitation after cooling and centrifugation. Androstenone is derivatized pre-column with dansylhydrazine (5 min at ambient temperature) using BF3 as catalyst. The compounds are separated on a 60 × 4.6 mm I.D., 3 μm Hypersil ODS column (Hewlett-Packard) using a step-gradient; total time for the separation is 15 min. Fluorescence is used for selective detection. The limit of quantitation for indole and skatole is 30 ng/g and for androstenone 200 ng/g back fat. The results for skatole obtained by the present method were compared with those of a colorimetric method, while androstenone determinations were compared with two GC—MS methods and a RIA method. The correlations observed were in the range of 0.946–0.993. The average contents of androstenone and skatole were 640 ± 700 and 78 ± 113 ng/g (n = 1162 male pigs), respectively.  相似文献   

17.
18.
Androstenone is a 16-androstene steroid pheromone produced in the Leydig cells in the testis, and considered to be one of the major compounds responsible for boar taint. In entire male pigs, progress of sexual maturation has been related to an increase in androstenone levels in fat. Onset of puberty and subsequent reproductive function involves genetic factors affected by the internal and external environment. In this study entire male cross-bred pigs were housed under two different light regimens in order to manipulate the onset of puberty. DNA flow cytometry (FCM) was used to study spermatogenesis and monitor the proportions of haploid (1n), diploid (2n), and tetraploid (4n) testicular cells, with conventional histological evaluation used as the reference technique. Agreement between these two methods was found to be good. The best fit model explained 34% of the variation in the androstenone concentrations. Sexual maturation in boars of 125-146 days of age, as assessed by DNA FCM, was not significantly associated with the variation in androstenone concentrations in adipose tissue when various independent variables (breed, age, light strategy, skatole concentrations in fat, and length of the bulbourethralis glands) were included in this model. These findings support the suggestion that selection against androstenone may be an option in the breeding of entire male pigs.  相似文献   

19.
20.
Raising intact male pigs would have a significant economic impact on the pork industry. However, the presence of skatole (a major cause of boar taint) in meat from intact male pigs could be highly objectionable to consumer. The excessive accumulation of skatole in fat is a major cause of boar taint, and is associated with defective expression of cytochrome P4502E1 (CYP2E1). In pigs, it has been found that CYP2E1 is negatively correlated with accumulation of skatole. The searching for polymorphism of CYP2E1 and the relevant functional analysis would help develop a genetic marker for the selection of pigs with low skatole levels in fat. The aim of this study was to measure the expression pattern of CYP2E1 mRNA in various tissues of the pig, to identify genetic polymorphisms, and to evaluate the functional relevance of polymorphic sites with respect to the skatole level in fat. We show herein that a substitution of G → A at base 1423 of the CYP2E1 gene in the liver causes a significant decrease in the expressed CYP2E1 level. Our data suggest that the G → A substitute might be at least partially responsible for a high level of skatole in pigs. We believe that this is an important step toward the selection of genetic markers for boar taint by lowering fat levels of skatole in fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号