共查询到20条相似文献,搜索用时 13 毫秒
1.
Kliem KE Shingfield KJ Humphries DJ Givens DI 《Animal : an international journal of animal bioscience》2011,5(8):1311-1321
Based on potential benefits to human health, there is increasing interest in altering the composition of ruminant-derived foods. Including rapeseeds in the dairy cow diet is an effective strategy for replacing medium-chain saturated fatty acids (SFA) with cis-monounsaturated fatty acids (MUFA) in bovine milk, but there is limited information on the optimum level of supplementation. Decreases in SFA due to plant oils are also accompanied by increases in milk trans fatty acid (FA) content and it is possible that high oleic acid rapeseeds may result in a higher enrichment of cis-9 18:1 and lower increases in trans FAs in milk compared with conventional varieties. Seven multiparous lactating Holstein-Friesian cows were allocated to one of seven treatments in an incomplete Latin square design with five 28-day experimental periods, to evaluate the effect of replacing calcium salts of palm oil distillate (CPO; 41 g/kg diet dry matter, DM) with 128, 168 or 207 g/kg diet DM of conventional (COR) or a high oleic acid (HOR) rapeseed fed as a supplement milled with wheat. Rapeseed variety and inclusion level had no effect (P > 0.05) on DM intake, milk yield and composition. Both rapeseed varieties decreased linearly (P < 0.001) milk fat SFA content, which was partially compensated for by a linear increase (P < 0.001) in cis-9 18:1 concentration. Reductions in milk SFA were also associated with increases (P < 0.05) in trans 18:1 and total trans FA content, with no difference (P > 0.05) between rapeseed varieties. Replacing CPO in the diet with milled rapeseeds had no effect (P > 0.05) on total milk conjugated linoleic acid (CLA) concentration. Relative to a COR, inclusion of a high oleic acid variant in the diet increased (P = 0.01) the ratio of trans-MUFA : trans-polyunsaturated fatty acids in milk that may have implications with respect to cardiovascular disease risk in humans. In conclusion, data indicated that replacing CPO with milled rapeseeds at levels up to 1150 g oil/day could be used as a nutritional strategy to lower milk SFA content without inducing adverse effects on DM intake and milk production. HOR reduced milk fat SFA content to a greater extent than a conventional variety, but did not minimise associated increases in trans FA concentrations. However, the high oleic acid variant did alter the relative abundance of specific trans 18:1, CLA and trans 18:2 isomers compared with conventional rapeseeds. 相似文献
2.
Kliem KE Aikman PC Humphries DJ Morgan R Shingfield KJ Givens DI 《Animal : an international journal of animal bioscience》2009,3(12):1754-1762
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet-genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet. 相似文献
3.
《Animal : an international journal of animal bioscience》2017,11(2):354-364
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average −3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions. 相似文献
4.
《Animal : an international journal of animal bioscience》2014,8(1):163-174
On the basis of the potential benefits to human health there is an increased interest in producing milk containing lower-saturated fatty acid (SFA) and higher unsaturated fatty acid (FA) concentrations, including cis-9 18:1 and cis-9, trans-11-conjugated linoleic acid (CLA). Twenty-four multiparous Holstein cows were used in two experiments according to a completely randomized block design, with 21-day periods to examine the effects of incremental replacement of prilled palm fat (PALM) with sunflower oil (SFO) in high-concentrate diets containing 30 g/kg dry matter (DM) of supplemental fat (Experiment 1) or increases in the forage-to-concentrate (F : C) ratio from 39 : 61 to 48 : 52 of diets containing 30 g/kg DM of SFO (Experiment 2) on milk production, digestibility and milk FA composition. Replacing PALM with SFO had no effect on DM intake, but tended to increase organic matter digestibility, yields of milk, protein and lactose, and decreased linearly milk fat content. Substituting SFO for PALM decreased linearly milk fat 8:0 to 16:0 and cis-9 16:1, and increased linearly 18:0, cis-9 18:1, trans-18:1 (Δ4 to 16), 18:2 and CLA concentrations. Increases in the F : C ratio of diets containing SFO had no effect on intake, yields of milk, milk protein or milk lactose, lowered milk protein content in a quadratic manner, and increased linearly NDF digestion and milk fat secretion. Replacing concentrates with forages in diets containing SFO increased milk fat 4:0 to 10:0 concentrations in a linear or quadratic manner, decreased linearly cis-9 16:1, trans-6 to -10 18:1, 18:2n-6, trans-7, cis-9 CLA, trans-9, cis-11 CLA and trans-10, cis-12 CLA, without altering milk fat 14:0 to 16:0, trans-11 18:1, cis-9, trans-11 CLA or 18:3n-3 concentrations. In conclusion, replacing prilled palm fat on with SFO in high-concentrate diets had no adverse effects on intake or milk production, other than decreasing milk fat content, but lowered milk fat medium-chain SFA and increased trans FA and polyunsaturated FA concentrations. Increases in the proportion of forage in diets containing SFO increased milk fat synthesis, elevated short-chain SFA and lowered trans FA concentrations, without altering milk polyunsaturated FA content. Changes in fat yield on high-concentrate diets containing SFO varied between experiments and individual animals, with decreases in milk fat secretion being associated with increases in milk fat trans-10 18:1, trans-10, cis-12 CLA and trans-9, cis-11 CLA concentrations. 相似文献
5.
A total of 32 lactating Holstein cows with mean body weight of 622 kg (s.e. = 24) were allotted, at week 25 of lactation, to eight groups of four cows blocked for similar days in milk. The objective of the experiment was to determine the effect of feeding four dietary concentrations (0, 50, 100 or 150 g/kg of dry matter) of whole flaxseed, which contains the plant lignan precursor secoisolariciresinol diglucoside (SDG), on concentrations of two mammalian lignans (enterodiol and enterolactone) in milk. The effects of the four diets on feed intake, milk production, milk composition and digestion were also studied. Cows within each block were assigned to one of the four isonitrogenous and isoenergetic total mixed diets and the experiment was carried out from week 25 to 29 of lactation. Diets were fed for ad libitum intake. Enterolactone was the mammalian lignan, of the two metabolites studied, detected in the milk of cows and its concentration in milk tended (P = 0.08) to increase linearly with higher intake of SDG in the diet. Feed intake, milk yield and milk composition were similar among diets. Milk fatty acid profile was slightly improved by feeding flaxseed, as shown by higher concentrations of fatty acids (e.g. n-3) recognized as being beneficial for human health. Those results suggest that feeding of whole flaxseed may result in changes in milk fatty acid composition and enterolactone content, which offer benefits for consumers. 相似文献
6.
《Animal : an international journal of animal bioscience》2019,13(6):1198-1207
Sugarcane is an important forage source for dairy cows in tropical countries. However, it provides limited digestible fiber and energy intake, and fat supplementation can be a way to increase energy density and decrease dietary, non-fiber carbohydrates concentrations. We aimed to evaluate the performance, digestion and metabolism of dairy cows in early lactation fed different concentrations of soybean oil (SBO) in sugarcane-based diets. Fourteen primiparous (545±17.2 kg of BW) and eight multiparous (629±26.7 kg BW) Holstein dairy cows were used according to a randomized block design. After calving, diets were randomly assigned to cows within the two parity groups. Diets were formulated with increasing concentrations of SBO (g/kg dry matter (DM)): control (0), low (LSBO; 15.7), medium (MSBO; 44.3) and high (HSBO; 73.4). The study was performed from calving until 84 days in milk, divided into three periods of 28 days each. Dry matter intake (DMI) was affected quadratically in response to SBO addition with the greatest and lowest values of 19.0 and 16.0 kg/day for LSBO and HSBO diets, respectively. The digestibility of potentially digestible NDF was quadratically affected by SBO with the greatest value of 623 g/kg for LSBO diet. Both milk and energy-corrected milk (ECM) production were quadratically affected by SBO inclusion, with greatest ECM values of 27.9 and 27.3 for LSBO and MSBO, respectively. Soybean oil inclusion linearly decreased milk fat concentration by 13.2% from control to HSBO. The CLA t10,c12-18:2 was observed in milk fat only for MSBO and HSBO diets. Soybean oil inclusion did not affect plasma glucose or serum concentrations of total proteins, globulins, albumin, urea nitrogen, beta-hydroxybutyrate, non-esterified fatty acids or insulin. Serum concentrations of total cholesterol, triglycerides and low-density lipoprotein increased with SBO supplementation. Soybean oil inclusion in sugarcane-based diets for early lactation dairy cows from 15.7 to 44.3 g/kg DM can improve energy intake and performance; however, at 44.3 g/kg DM milk fat concentration and ECM decreased. Soybean oil inclusion at 73.4 g/kg DM adversely affected energy intake, fiber digestion and performance of early lactation dairy cows and is not recommended. 相似文献
7.
《Animal : an international journal of animal bioscience》2018,12(12):2578-2586
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis. 相似文献
8.
《Archives of animal nutrition》2013,67(1):60-69
Holstein cows were fed total mixed rations (TMR) supplemented with protected palm fat (PPF), whole sunflower seed (WSS) or extruded linseed (ELS) for 100 days. Percentage of dietary crude fat was 5.3, 5.1 and 5.1, respectively. Diet had no (p > 0.05) effect on feed intake, milk yield or milk protein content. Percentage of milk fat and yield of fat – corrected milk were significantly increased when diets were supplemented with WSS and ELS. Feeding PPF resulted in the lowest (p < 0.05) ruminal concentration of volatile fatty acids. No significant dietary effect on plasma characteristics was observed. Concentration of polyunsaturated fatty acids (PUFA) was higher (p < 0.05), and PUFA n-6/n-3 ratio lower (p < 0.05), in the milk fat from cows fed ELS compared to WSS. Supplementation of TMR with oilseeds compared to PPF increased the content of CLA in milk fat (p < 0.005) and decreased its atherogenicity, primarily due to a significant reduction of palmitic acid concentration. Both oilseeds significantly improved the spreadability index of manufactured butter. ELS, but not WSS, increased the susceptibility of milk fat to oxidation (p < 0.05). It can be concluded that feeding of oilseeds to dairy cows improved nutritional quality of milk fat, with supplementation with ELS producing an even more desirable milk fatty acid profile than WSS supplementation. 相似文献
9.
《Animal : an international journal of animal bioscience》2019,13(7):1421-1431
Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions. 相似文献
10.
Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition
Kliem KE Morgan R Humphries DJ Shingfield KJ Givens DI 《Animal : an international journal of animal bioscience》2008,2(12):1850-1858
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS. 相似文献
11.
《Animal : an international journal of animal bioscience》2019,13(2):309-317
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to one of four treatment diets in a 4×4 Latin square design with 28-day periods. Diets were fed as a total mixed ration with a 50 : 50 forage : concentrate ratio (dry matter (DM) basis) with the forage consisting of 75 : 25 maize silage : grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/day (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 l/kg DMI) and intensity (by 2.7 l/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield or intensity, whereas feeding MR had no effect. 相似文献
12.
《Animal : an international journal of animal bioscience》2020,14(12):2523-2534
Sub-acute ruminal acidosis (SARA) is sometimes observed along with reduced milk fat synthesis. Inconsistent responses may be explained by dietary fat levels. Twelve ruminally cannulated cows were used in a Latin square design investigating the timing of metabolic and milk fat changes during Induction and Recovery from SARA by altering starch levels in low-fat diets. Treatments were (1) SARA Induction, (2) Recovery and (3) Control. Sub-acute ruminal acidosis was induced by feeding a diet containing 29.4% starch, 24.0% NDF and 2.8% fatty acids (FAs), whereas the Recovery and Control diets contained 19.9% starch, 31.0% NDF and 2.6% FA. Relative to Control, DM intake (DMI) and milk yield were higher in SARA from days 14 to 21 and from days 10 to 21, respectively (P < 0.05). Milk fat content was reduced from days 3 to 14 in SARA (P < 0.05) compared with Control, while greater protein and lactose contents were observed from days 14 to 21 and 3 to 21, respectively (P < 0.05). Milk fat yield was reduced by SARA on day 3 (P < 0.05), whereas both protein and lactose yields were higher on days 14 and 21 (P < 0.05). The ruminal acetate-to-propionate ratio was lower, and the concentrations of propionate and lactate were higher in the SARA treatment compared with Control on day 21 (P < 0.05). Plasma insulin increased during SARA, whereas plasma non-esterified fatty acids and milk β-hydroxybutyrate decreased (P < 0.05). Similarly to fat yield, the yield of milk preformed FA (>16C) was lower on day 3 (P < 0.05) and tended to be lower on day 7 in SARA cows (P < 0.10), whereas yield of de novo FA (<16C) was higher on day 21 (P < 0.01) in the SARA group relative to Control. The t10- to t11-18:1 ratio increased during the SARA Induction period (P < 0.05), but the concentration of t10-18:1 remained below 0.5% of milk fat, and t10,c12 conjugated linoleic acid remained below detection levels. Odd-chain FA increased, whereas branched-chain FA was reduced during SARA Induction from days 3 to 21 (P < 0.05). Sub-acute ruminal acidosis reduced milk fat synthesis transiently. Such reduction was not associated with ruminal biohydrogenation intermediates but rather with a transient reduction in supply of preformed FA. Subsequent rescue of milk fat synthesis may be associated with higher availability of substrates due to increased DMI during SARA. 相似文献
13.
《Animal : an international journal of animal bioscience》2014,8(7):1178-1190
Enhancing healthy fatty acids (FAs) in ewe milk fat and suckling lamb tissues is an important objective in terms of improving the nutritional value of these foods for the consumer. The present study examined the effects of feeding-protected lipid supplements rich in unsaturated FAs on the lipid composition of ewe milk, and subsequently in the muscle and subcutaneous adipose tissues of lambs suckling such milk. Thirty-six pregnant Churra ewes with their new-born lambs were assigned to one of three experimental diets (forage/concentrate ratio 50 : 50), each supplemented with either 3% Ca soap FAs of palm (Control), olive (OLI) or fish (FO) oil. The lambs were nourished exclusively by suckling for the whole experimental period. When the lambs reached 11 kg BW, they were slaughtered and samples were taken from the Longissimus dorsi and subcutaneous fat depots. Although milk production was not affected by lipid supplementation, the FO diet decreased fat content (P<0.001), whereas the OLI milk FA profile resembled that of the Control diet. In contrast, although FO drastically diminished the contents of stearic and oleic acids (P<0.001), all the saturated even-numbered carbon FAs from 6:0 to 14:0 increased (P<0.05). FO also produced the highest levels of c9,t11-18:2 (2.21%) and n-3 FAs, 20:5 n-3 (0.58%), 22:5 n-3 (0.48%) and 22:6 n-3 (0.40%). The high levels of trans-11 18:1 (7.10%) obtained from the FO diet would suggest that Ca soaps only confer partial protection in the rumen. In contrast, the lack of significant differences in trans-10 18:1 levels (P>0.05) and other trans-FAs between Control and FO treatments would indicate that FO treatment does not alter rumen biohydrogenation pathways under the assayed conditions. Changes in dam milk FA composition induced differences in the FA profiles of meat and fat depots of lambs, preferentially incorporated polyunsaturated FAs into the muscle rather than storing them in the adipose tissue. In the intramuscular fat of the FO treatment, all the n-3 FAs reached their highest concentrations: 0.97 (18:3 n-3), 2.72 (20:5 n-3), 2.21 (22:5 n-3) and 1.53% (22:6 n-3). In addition, not only did FO intramuscular fat have the most cis-9, trans-11 18:2 (1.66%) and trans-11 18:1 (3.75%), but also the lowest n-6/n-3 ratio (1.80) and saturated FA content were not affected. Therefore, FO exhibited the best FA profile from a nutritional point of view. 相似文献
14.
《Animal : an international journal of animal bioscience》2012,6(7):1178-1186
The aim of this experiment was to, under typical Swedish production conditions, evaluate the effects of grass silages subjected to different N-fertilisation regimes fed to dairy cows on the fatty acid (FA) composition of their milk, and to compare the grass silages in this respect to red clover-dominated silage. Grass silages made from first year Phleum pratense L. leys subjected to three N-fertilisation regimes (30, 90 and 120 kg N/ha, designated G-30, G-90 and G-120, respectively) and a mixed red clover–grass silage (Trifolium pratense L. and P. pratense L.; 60/40 on dry matter (DM) basis, designated RC–G) were produced. The experiment was conducted as a change-over design, including 24 primiparous and multiparous dairy cows of the Swedish Red breed, each of which was allocated to three of the four diets. The cows were offered 11 kg DM of silage and 7 kg concentrates. The silages had similar DM and energy concentrations. The CP concentration increased with increase in N-fertilisation level. There was a linear increase in DM intake of the different silages with increased N fertilisation. There were also differences in concentrations of both individual and total FAs amongst silages. The daily milk production (kg/day) did not significantly differ between treatments, but G-30 silage resulted in higher concentrations of 18:2n-6 in the milk compared with the other two grass silages. The highest concentrations of 18:3n-3 and cis-9, trans-11 18:2 were found in milk from cows offered the RC–G silage. The G-30 diet resulted in higher concentration of 18:2n-6 and the same concentration of 18:3n-3 in the milk as the other grass silages, despite lower intake levels of these FAs. The apparent recoveries of 18:3n-3 from feed to milk were 5.74%, 4.27%, 4.10% and 5.31% for G-30, G-90, G-120 and RC–G, respectively. A higher recovery when red clover is included in the diet confirms previous reports. The higher apparent recovery of 18:3n-3 on the G-30 treatment may be related to the lower silage DM intake, which led to a higher relative proportion of ingested FAs originating from concentrates compared with the G-90 and G-120 diets. With the rates and types of concentrates used in this study, the achieved differences in FA composition among the silages were not enough to influence the concentrations of unsaturated FAs in milk. 相似文献
15.
《Archives of animal nutrition》2013,67(6):452-468
Abstract In order to determine the effects of a varied level of dietary energy intake during pregnancy and lactation on milk yield and composition, first, second and fourth parity sows (Large White × German Landrace) were provided with energy at a level of either: (i) 100% of ME requirement (MEreq) during pregnancy and lactation, (ii) 120% MEreq during pregnancy and 80% during lactation, and (iii) 80% MEreq during pregnancy and 120% during lactation. In spite of equal target levels feed analysis revealed that gestating first parity sows with 120/80 treatment combination and lactating sows of 80/120 treatment combination received 25, and 11 – 17% more digestible N than in the respective 100/100 treatment combination. Irrespective of this 120/80 sows responded with the highest milk DM, fat, and energy contents, and the lowest lactose concentrations whereas protein levels where not affected, irrespective of parity (p < 0.05). Milk yield of sows in 1st and 4th lactation was 85 and 106% of that in 2nd lactation, respectively. Average milk composition was 18.1% DM, 4.9% protein, 6.8% fat, 5.6% lactose, and 0.8% ash. Milk composition changes ceased at day 7 of lactation with a reduction of milk GE and protein, and an increase of lactose content. Concentrations of threonine, arginine, valine, leucine, tyrosine, phenylalanine, cystine, and tryptophan, as well as stearic, oleic, and linoleic acid were higher in colostrum than in milk at later lactation stages. In contrast, laurine, myristic, palmitic, and palmitoleic acids were lower concentrated in colostrum. In conclusion, these results illustrate the importance of body reserve mobilization for milk production in sows and indicate that low energy supply during gestation cannot be compensated by higher energy supply during lactation. 相似文献
16.
《Animal : an international journal of animal bioscience》2021,15(7):100300
There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 × 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered. 相似文献
17.
《Animal : an international journal of animal bioscience》2014,8(3):420-430
Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4×4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine. 相似文献
18.
Annett RW Carson AF Fearon AM Kilpatrick DJ 《Animal : an international journal of animal bioscience》2011,5(12):1923-1937
The objectives of this study were to investigate the effects of fish oil supplementation on performance and muscle fatty acid composition of hill lambs finished on grass-based or concentrate-based diets, and to examine the interaction with selenium (Se) status. In September 2006, 180 entire male lambs of mixed breeds were sourced from six hill farms after weaning and finished on five dietary treatments: grazed grass (GG), grass +0.4 kg/day cereal-based concentrate (GC), grass +0.4 kg/day cereal-based concentrate enriched with fish oil (GF), ad libitum cereal-based concentrate (HC) and ad libitum fish oil-enriched concentrate (HF). Within each treatment, half of the lambs were also supplemented with barium selenate by subcutaneous injection. At the start of the trial, the proportion of lambs with a marginal (<0.76 μmol/l) or deficient (<0.38 μmol/l) plasma Se status was 0.84 and 0.39, respectively. Compared with control lambs, GG lambs treated with Se had higher (P < 0.01) plasma Se levels, whereas erythrocyte glutathione peroxidase activity was higher (P < 0.01) for Se-supplemented lambs fed diets GG and GF. However, Se supplementation had no effects on any aspect of animal performance. Fish oil increased (P < 0.05) levels of 22:5n-3 and 22:6n-3 in the Longissimus dorsi of HF lambs but otherwise had no effect on the health attributes of lamb meat. There were no significant effects of fish oil on dry matter intake, animal performance or lamb carcass characteristics. Daily carcass weight gain (CWG; P < 0.001), carcass weight (P < 0.01) and conformation score (P < 0.01) increased with increasing concentrate inputs. Lambs fed concentrate-based diets achieved a higher mean CWG (P < 0.001), dressing proportion (P < 0.001) and carcass weight (P < 0.011), and were slaughtered up to 8.3 days earlier (P < 0.05) and at 1.2 kg lower (P < 0.05) live weight than pasture-fed lambs. However, carcasses from grass-fed lambs contained lower levels of perinephric and retroperitoneal fat (P < 0.05), and had less fat over the Iliocostalis thoracis (P < 0.001) and Obliquus internus abdominis (P < 0.05). Meat from grass-fed lambs also had lower levels of 18:2n-6 and total n-6 fatty acids compared with those finished indoors. The results of this study demonstrate that fish oil supplementation has some benefits for the health attributes of meat from lambs fed concentrate-based diets but not grass-based diets. Supplementing Se-deficient lambs with barium selenate will improve Se status of lambs fed zero-concentrate diets, but has no additional benefit when lambs are already consuming their daily Se requirement from concentrates or when fish oil-enriched diets are fed. 相似文献
19.
Effects of crude rapeseed oil on lipid composition in Arctic charr Salvelinus alpinus 总被引:1,自引:0,他引:1
This study investigated the effects of crude rapeseed oil (RO) on lipid content and composition in muscle and liver of Arctic charr Salvelinus alpinus . Triplicate groups were fed diets containing fish oil (FO):RO ratio of 100:0, 75:25, 50:50 and 25:75 until two-fold mass increase. Total lipid content increased significantly in the liver with higher proportion of RO in the diet. Profound effects were seen in the fatty acid composition in the analysed tissues with a reduction in 20:5n-3 and 22:6n-3 and an increase in 18:2n-6 with higher RO content in the diets. A drop in cholesterol content was seen at 25% inclusion of RO in both tissues. Wild-caught fish contained a considerably higher amount of 20:4n-6 in both storage and membrane lipids of white muscle compared with the experimental fish. 相似文献
20.
《Animal : an international journal of animal bioscience》2016,10(12):2074-2082
Sulla (Sulla coronarium L.) forage is valued for its positive impact on ruminant production, in part due to its moderate content of condensed tannin (CT). The duration of daily grazing is a factor affecting the feed intake and milk production of ewes. In this study, the effects of grazing sulla pasture compared with annual ryegrass, and the extension of grazing from 8 to 22 h/day, were evaluated with regard to ewe forage intake and milk production, as well as the physicochemical properties and fatty acid (FA) composition of cheese. During 42 days in the spring, 28 ewes of the Comisana breed were divided into four groups (S8, S22, R8 and R22) that grazed sulla (S) or ryegrass (R) for 8 (0800 to 1600 h) or 22 h/day, and received no feeding supplement. In six cheese-making sessions, cheeses were manufactured from the 48 h bulk milk of each group. Compared with ewes grazing ryegrass, those grazing sulla had higher dry matter (DM) intake, intake rate and milk yield, and produced milk that was lower in fat and higher in casein. Ewes grazing for 22 h spent more time eating, which reduced the intake rate, increased DM and nutrient intake and milk yield, and reduced milk fat. Due to the ability of CT to inhibit the complete ruminal biohydrogenation of polyunsaturated fatty acids (PUFA), the FA composition of sulla cheese was more beneficial for consumer health compared with ryegrass cheese, having lower levels of saturated fatty acids and higher levels of PUFA and n-3 FA. The FA profile of S8 cheese was better than that of S22 cheese, as it was higher in branched-chain FA, monounsaturated FA, PUFA, rumenic acid (c9,t11-C18:2), and had a greater health-promoting index. The effect of short grazing time on sulla was attributed to major inhibition of PUFA biohydrogenating ruminal bacteria, presumably stimulated by the higher accumulation of sulla CT in the rumen, which is related to a higher intake rate over a shorter eating time. Thus, grazing sulla improved the performance of ewes, thereby increasing, especially with short grazing time, the nutritional properties of cheese fat. 相似文献