首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

2.
组胺对肺动脉内皮细胞一氧化氮合酶基因表达的影响   总被引:3,自引:1,他引:3  
Lu DQ  Li HG  Ye H  Ye SQ  Jin S  Wang DX 《生理学报》2004,56(3):288-294
本实验研究了组胺对原代培养的肺动脉内皮细胞一氧化氮合酶(nitric oxidCsynthase,NOS)基因表达的影响及分子机制。采用RT-PCR和免疫印迹技术分别检测mRNA和蛋白质的表达水平,用荧光素酶报告基因实验检测eNOS基因转录起始点上游长1.6-kb的启动子活性,用硝酸还原酶法检测NO的产量。结果发现,组胺增强eNOS表达,呈浓度和时间依赖性,10μmol/L组胺处理肺动脉内皮细胞24h可使eNOS mRNA和蛋白质的表达达到高峰,eNOS mRNA水平为正常对照组的160.8±12.2%(P<0.05),蛋白质水平为正常对照组的136.2±11.2%(P<0.05)。特异性CaMK Ⅱ抑制剂KN-93可抑制组胺的这一效应,表明组胺可通过激活CaMK Ⅱ增强肺动脉内皮细胞eNOS基因的表达。报告基因实验表明,10μmol/L组胺处理24h后肺动脉内皮细胞eNOS基因启动子的活性增强,为正常对照组的148.2±33.7%(P<0.05)。组胺可使肺动脉内皮细胞产生NO增加。这些结果表明组胺在转录水平增强肺动脉内皮细胞eNOS基因的表达,并使细胞产生NO增加,这可能是组胺调节肺血管张力的机制之一。CaMK Ⅱ可能是组胺增强肺动脉内皮细胞eNOS基因表达的途径之一。  相似文献   

3.
The effects of specific microtubule-active agents on nitric oxide (NO) production were examined in pulmonary artery endothelial cells (PAEC). PAEC were incubated with taxol, which stabilizes microtubules, or nocodazole, which disrupts microtubules, or both for 2-4 h. We then examined NO production, endothelial NO synthase (eNOS) activity, and eNOS association with heat shock protein (HSP) 90. Incubation of PAEC with taxol (15 microM) for 2-4 h resulted in an increase in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. Incubation of PAEC with nocodazole (50 microM) for 2-4 h induced a decrease in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. The presence of taxol in the culture medium prevented the effects of nocodazole on NO production and eNOS activity in PAEC. Geldanamycin, a HSP90 inhibitor, prevented the taxol-induced increase in eNOS activity. Taxol and nocodazole did not affect eNOS, HSP90, and tubulin protein contents in PAEC, as detected using Western blot analysis. These results indicate that the polymerization state of the microtubule cytoskeleton regulates NO production and eNOS activity in PAEC. The changes in eNOS activity induced by modification of microtubules are due, at least in part, to the altered binding of HSP90 to eNOS protein.  相似文献   

4.
The myeloperoxidase-derived oxidant hypochlorous acid (HOCl) is thought to contribute to endothelial dysfunction, but the mechanisms underlying this inhibitory effect are unknown. The present study tested the hypothesis that HOCl and L-arginine (L-Arg) react to form novel compounds that adversely affect endothelial function by inhibiting nitric oxide (NO) formation. Using spectrophotometric techniques, we found that HOCl and L-Arg react rapidly (k = 7.1 x 10(5) m(-1) s(-1)) to form two major products that were identified by mass spectrometry as monochlorinated and dichlorinated adducts of L-Arg. Pretreatment of bovine aortic endothelial cells with the chlorinated L-Arg metabolites (Cl-l-Arg) inhibited the -induced formation of the NO metabolites nitrate (NO(3)(-)) and nitrite (NO(2)(-)) in a concentration-dependent manner. Preincubation of rat aortic ring segments with Cl-L-Arg resulted in concentration-dependent inhibition of acetylcholine-induced relaxation. In contrast, blood vessels relaxed normally to the endothelium-independent vasodilator sodium nitroprusside. In vivo administration of Cl-L-Arg to anesthetized rats increased carotid artery vascular resistance. A greater than 10-fold excess of L-Arg was required to reverse the inhibitory effects of Cl-L-Arg in vivo and in vitro. Reaction of HOCl with D-arginine (D-Arg) did not result in the formation of inhibitory products. These results suggest that HOCl reacts with L-Arg to form chlorinated products that act as nitric-oxide synthase inhibitors.  相似文献   

5.
Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.  相似文献   

6.
The role of protein tyrosine phosphorylation during regulation of NO synthase (eNOS) activity in endothelial cells is poorly understood. Studies to define this role have used inhibitors of tyrosine kinase or tyrosine phosphatase (TP). Phenylarsine oxide (PAO), an inhibitor of TP, has been reported to bind thiol groups, and recent work from our laboratory demonstrates that eNOS activity depends on thiol groups at its catalytic site. Therefore, we hypothesized that PAO may have a direct effect on eNOS activity. To test this, we measured (i) TP and eNOS activities both in total membrane fractions and in purified eNOS prepared from porcine pulmonary artery endothelial cells and (ii) sulfhydryl content and eNOS activity in purified bovine aortic eNOS expressed in Escherichia coli. High TP activity was detected in total membrane fractions, but no TP activity was detected in purified eNOS fractions. PAO caused a dose-dependent decrease in eNOS activity in total membrane and in purified eNOS fractions from porcine pulmonary artery endothelial cells, even though the latter had no detectable TP activity. PAO also caused a decrease in sulfhydryl content and eNOS activity in purified bovine eNOS. The reduction in eNOS sulfhydryl content and the inhibitory effect of PAO on eNOS activity were prevented by dithiothreitol, a disulfide-reducing agent. These results indicate that (i) PAO directly inhibits eNOS activity in endothelial cells by binding to thiol groups in the eNOS protein and (ii) results of studies using PAO to assess the role of protein tyrosine phosphorylation in regulating eNOS activity must be interpreted with great caution.  相似文献   

7.
8.
Chemokines have been implicated convincingly in the driving of leukocyte emigration in different inflammatory reactions. Multiple signaling mechanisms are reported to be involved in intracellular activation of chemokine expression in vascular endothelial cells by various stimuli. Nevertheless, redox-regulated mechanisms of chemokine expression in human dermal microvascular endothelial cells (HDMEC) remain unclear. This study examined the effects of pyrrolidine dithiocarbamate (PDTC, 0.1 mM) and spermine NONOate (Sper-NO, 1 mM) on the secretion and gene expression of chemokines, interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, regulated upon activation normal T cell expressed and secreted (RANTES), and eotaxin. This study also addresses PDTC and Sper-NO effects on activation of nuclear factor kappa B (NF-kappaB) induced by TNF-alpha (10 ng/ml). Treatment with TNF-alpha for 8 h significantly increased secretion of IL-8, MCP-1, and RANTES, but not of eotaxin, in cultured HDMEC. Up-regulation of these chemokines was suppressed significantly by pretreatment with PDTC or Sper-NO for 1 h, but not by 1 mM 8-bromo-cyclic GMP. The mRNA accumulation of IL-8, MCP-1, RANTES, and eotaxin, and activation of NF-kappaB were induced by TNF-alpha for 2 h; all were suppressed significantly by the above two pretreatments. These findings indicate that both secretion and mRNA accumulation of IL-8, MCP-1, and RANTES in HDMEC induced by TNF-alpha are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly via blocking redox-regulated NF-kappaB activation. These results suggest that restoration of the redox balance using antioxidant agents or nitric oxide pathway modulators may offer new opportunities for therapeutic interventions in inflammatory skin diseases.  相似文献   

9.
Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1α) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS.  相似文献   

10.
Adiponectin is secreted by adipose cells and mimics many metabolic actions of insulin. However, mechanisms by which adiponectin acts are poorly understood. The vascular action of insulin to stimulate endothelial production of nitric oxide (NO), leading to vasodilation and increased blood flow is an important component of insulin-stimulated whole body glucose utilization. Therefore, we hypothesized that adiponectin may also stimulate production of NO in endothelium. Bovine aortic endothelial cells in primary culture loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA) were treated with lysophosphatidic acid (LPA) (a calcium-releasing agonist) or adiponectin (10 microg/ml bacterially produced full-length adiponectin). LPA treatment increased production of NO by approximately 4-fold. Interestingly, adiponectin treatment significantly increased production of NO by approximately 3-fold. Preincubation of cells with wortmannin (phosphatidylinositol 3-kinase inhibitor) blocked only adiponectin- but not LPA-mediated production of NO. Using phospho-specific antibodies, we observed that either adiponectin or insulin treatment (but not LPA treatment) caused phosphorylation of both Akt at Ser473 and endothelial nitric-oxide synthase (eNOS) at Ser1179 that was inhibitable by wortmannin. We next transfected bovine aortic endothelial cells with dominant-inhibitory mutants of Akt (Akt-AAA) or AMP-activated protein kinase (AMPK) (AMPKK45R). Neither mutant affected production of NO in response to LPA treatment. Importantly, only AMPKK45R, but not Akt-AAA, caused a significant partial inhibition of NO production in response to adiponectin. Moreover, AMPK-K45R inhibited phosphorylation of eNOS at Ser1179 in response to adiponectin but not in response to insulin. We conclude that adiponectin has novel vascular actions to directly stimulate production of NO in endothelial cells using phosphatidylinositol 3-kinase-dependent pathways involving phosphorylation of eNOS at Ser1179 by AMPK. Thus, the effects of adiponectin to augment metabolic actions of insulin in vivo may be due, in part, to vasodilator actions of adiponectin.  相似文献   

11.
We examined the effects of acute glucose overload (pretreatment for 3 h with 23 mM D-glucose) on the cellular productivity of nitric oxide (NO) in bovine aortic endothelial cells (BAEC). We had previously reported (Kimura C, Oike M, and Ito Y. Circ Res, 82: 677-685, 1998) that glucose overload impairs Ca(2+) mobilization due to an accumulation of superoxide anions (O(2)(-)) in BAEC. In control cells, ATP induced an increase in NO production, assessed by diaminofluorescein 2 (DAF-2), an NO-sensitive fluorescent dye, mainly due to Ca(2+) entry. In contrast, ATP-induced increase in DAF-2 fluorescence was impaired by glucose overload, which was restored by superoxide dismutase, but not by catalase or deferoxamine. Furthermore, pyrogallol, an O(2)(-) donor, also attenuated ATP-induced increase in DAF-2 fluorescence. In contrast, a nonspecific intracellular Ca(2+) concentration increase induced by the Ca(2+) ionophore A-23187, which depletes the intracellular store sites, elevated DAF-2 fluorescence in both control and high D-glucose-treated cells in Ca(2+)-free solution. These results indicate that glucose overload impairs NO production by the O(2)(-)-mediated attenuation of Ca(2+) entry.  相似文献   

12.
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta.  相似文献   

13.
The bioavailability of endothelial nitric oxide (NO) is regulated by transition metals but their mechanisms of action on NO synthesis and degradation are not clearly understood. Using differential pulse amperometry and NO microelectrodes, local NO concentration was measured at the surface of cultured human umbilical vein endothelial cells (HUVECs) stimulated by histamine or thrombin in the presence of transition metal chelators. The agonist-activated NO release required both extracellular Ca2+ and transition metals. In the presence of 1 mM external Ca2+, a low concentration of EGTA (5 microM) inhibited by 40% the NO release from stimulated HUVECs. In the presence of extracellular L-arginine, the inhibitory effect of EGTA was even more marked and, in its absence, it was suppressed by adding exogenous superoxide dismutase. The decrease in NO release induced by the copper chelators, cuprizone and DETC, suggests that extracellular traces of Cu2+ could regulate NO availability.  相似文献   

14.
Nitric oxide (NO) is a potent vasodilator which plays an important role in regulating vascular tones. Danshen, a Chinese herbal medicine has been widely used for the treatment of cardiovascular diseases. The objective of this study was to investigate the effect of magnesium tanshinoate B (MTB), a compound purified from Danshen, on the production of NO in human endothelial cell line (ECV304). After cells were incubated with MTB (1-10 µM) for 1 or 4 h, amounts of NO metabolites released by cells were quantified and cellular NOS activities were determined following the conversion of [3H]arginine to [3H]citrulline. The NOS protein expression was determined by Western immunoblotting analysis. MTB (1-10 µM) stimulated the release of NO and its metabolites from endothelial cells. Following MTB treatment, the cellular NOS activities were significantly enhanced with a concomitant increase in the levels of constitutive NOS (cNOS) protein mass (110-178%). Selective activation of cNOS by MTB may be employed therapeutically in modulating NO production in endothelial cells.  相似文献   

15.
Pregnancy enhanced nitric oxide production by uterine artery endothelial cells (UAEC) is the result of reprogramming of both Ca(2+) and kinase signaling pathways. Using UAEC derived from pregnant ewes (P-UAEC), as well as COS-7 cells transiently expressing ovine endothelial nitric oxide synthase (eNOS), we investigated the role of phosphorylation of five known amino acids following treatment with physiological calcium-mobilizing agent ATP and compared with the effects of PMA (also known as TPA) alone or in combination with ATP. In P-UAEC, ATP stimulated eNOS activity and phosphorylation of eNOS S617, S635, and S1179. PMA promoted eNOS phosphorylation but without activation. PMA and ATP cotreatment attenuated ATP-stimulated activity despite no increase in phospho (p)-T497 and potentiation of p-S1179. In COS-7 cells, PMA inhibition of ATP-stimulated eNOS activity was associated with p-T497 phosphorylation. Although T497D eNOS activity was reduced to 19% of wild-type eNOS with ATP and 44% with A23187, we nonetheless observed more p-S1179 with ATP than with A23187 (3.4-fold and 1.8-fold of control, respectively). Furthermore, the S1179A eNOS mutation partly attenuated ATP- but not A23187-stimulated activity, but when combined with T497D, no further reduction of eNOS activity was observed. In conclusion, although phosphorylation of eNOS is associated with activation in P-UAEC, no single or combination of phosphorylation events predict activity changes. In COS-7 cells, phosphorylation of T497 can attenuate activity but also influences S1179 phosphorylation. We conclude that in both cell types, observed changes in phosphorylation of key residues may influence eNOS activation but are not sufficient alone to describe eNOS activation.  相似文献   

16.
17.
18.
The c-Jun N-terminal kinases (JNKs) belonging to the mitogen-activated protein kinase (MAPK) superfamily play important roles in foam-cell formation, hypercholesterolemia-mediated endothelial dysfunction, and the development of obesity. Although decreased nitric oxide (NO) production via decreased phosphorylation of endothelial NO synthase at serine 1179 (eNOS-Ser(1179)) was reported to be partly involved in JNK2-derived endothelial dysfunction, JNK2 seems likely to be indirectly involved in this signaling pathway. Here, using bovine aortic endothelial cells, we examined whether JNK2 directly phosphorylated eNOS-Ser(116), a putative substrate site for the MAPK superfamily, and this phosphorylation resulted in decreased NO release. JNK inhibitor SP60012 increased NO release in a time- and dose-dependent manner, which was accompanied by increased eNOS-Ser(116) phosphorylation. Purified JNK2 directly phosphorylated eNOS-Ser(116)in vitro. Ectopic expression of dominant negative JNK2 repressed eNOS-Ser(116) phosphorylation and increased NO production. Coimmunoprecipitation and confocal microscopy studies revealed a colocalization of eNOS and JNK2. However, all these observed effects were not manifested when JNK1 probes were used. Overall, this study indicates that JNK2 is a physiological kinase responsible for eNOS-Ser(116) phosphorylation and regulates NO production.  相似文献   

19.
Introduction  Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Materials and methods  Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl+ cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl+ CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl+ cells. Conclusion  NAC enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide.  相似文献   

20.
Statin drugs can upregulate endothelial nitric oxide (NO) synthase (eNOS) in isolated endothelial cells independent of lipid-lowering effects. We investigated the effect of short-term simvastatin administration on coronary vascular eNOS and NO production in conscious dogs and canine tissues. Mongrel dogs were instrumented under general anesthesia to measure coronary blood flow (CBF). Simvastatin (20 mg. kg(-1). day(-1)) was administered orally for 2 wk; afterward, resting CBF was found to be higher compared with control (P < 0.05) and veratrine- (activator of reflex cholinergic NO-dependent coronary vasodilation) and ACh-mediated coronary vasodilation were enhanced (P < 0.05). Response to endothelium-independent vasodilators, adenosine and nitroglycerin, was not potentiated. After simvastatin administration, plasma nitrate and nitrite (NO(x)) levels increased from 5.22 +/- 1.2 to 7. 79 +/- 1.3 microM (P < 0.05); baseline and agonist-stimulated NO production in isolated coronary microvessels were augmented (P < 0.05); resting in vivo myocardial oxygen consumption (MVO(2)) decreased from 6.8 +/- 0.6 to 5.9 +/- 0.4 ml/min (P < 0.05); NO-dependent regulation of MVO(2) in response to NO agonists was augmented in isolated myocardial segments (P < 0.05); and eNOS protein increased 29% and eNOS mRNA decreased 50% in aortas and coronary vascular endothelium. Short-term administration of simvastatin in dogs increases coronary endothelial NO production to enhance NO-dependent coronary vasodilation and NO-mediated regulation of MVO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号