首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of promiscuous peptides, which bind to human leukocyte antigen, is indispensable for global vaccination. However, the development of such vaccines is impaired due to the exhaustive polymorphism in human leukocyte antigens. The use of in silico tools for mining such peptides circumvents the expensive and laborious experimental screening methods. Nevertheless, the intrepid use of such tools warrants a rational assessment with respect to experimental findings. Here, we have adopted a 'bottom up' approach, where we have used experimental data to assess the reliability of existing in silico methods. We have used a data set of 179 peptides from diverse antigens and have validated six commonly used in silico methods; ProPred, MHC2PRED, RANKPEP, SVMHC, MHCPred, and MHC-BPS. We observe that the prediction efficiency of the programs is not balanced for all the HLA-DR alleles and there is extremely high level of discrepancy in the prediction efficiency apropos of the nature of the antigen. It has not escaped our notice that the in silico methods studied here are not very proficient in identifying promiscuous peptides. This puts a much constraint on the intrepid use of such programs for human leukocyte antigen class II binding peptides. We conclude from this study that the in silico methods cannot be wholly relied for selecting crucial peptides for development of vaccines.  相似文献   

2.
We applied artificial neural networks (ANN) for the prediction of targets of immune responses that are useful for study of vaccine formulations against viral infections. Using a novel data representation, we developed a system termed MULTIPRED that can predict peptide binding to multiple related human leukocyte antigens (HLA). This implementation showed high accuracy in the prediction of the promiscuous peptides that bind to five HLA-A2 allelic variants. MULTIPRED is useful for the identification of peptides that bind multiple HLA-A2 variants as a group. By implementing ANN as a classification engine, we enabled both the prediction of peptides binding to multiple individual HLA-A2 molecules and the prediction of promiscuous binders using a single model. The ANN MULTIPRED predicts peptide binding to HLA-A*0205 with excellent accuracy (area under the receiver operating characteristic curve--AROC>0.90), and to HLA-A*0201, HLA-A*0204 and HLA-A*0206 with high accuracy (AROC>0.85). Antigenic regions with high density of binders ("antigenic hot-spots") represent best targets for vaccine design. MULTIPRED not only predicts individual 9-mer binders but also predicts antigenic hot spots. Two HLA-A2 hot-spots in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) membrane protein were predicted by using MULTIPRED.  相似文献   

3.
Leishmaniases are vector-borne diseases for which no vaccine exists. These diseases are caused by the Leishmania species complex. Activation of the CD8+ T cell is crucial for protection against intracellular pathogens, and peptide antigens are attractive strategies for the precise activation of CD8+ T in vaccine development against intracellular infections. The traditional approach to mine the epitopes is an arduous task. However, with the advent of immunoinformatics, in silico epitope prediction tools are available to expedite epitope identification. In this study, we employ different immunoinformatics tools to predict CD8+ T cell specific 9 mer epitopes presented by HLA-A*02 and HLA-B40 within the highly conserved 3′-ectonucleotidase of Leishmania donovani. We identify five promiscuous epitopes, which have no homologs in humans, theoretically cover 85% of the world's population and are highly conserved (100%) among Leishmania species. Presentation of selected peptides was confirmed by T2 cell line based HLA-stabilization assay, and three of them were found to be strong binders. The in vitro peptide stimulation of peripheral blood mononuclear cells (PBMC) from cured HLA-A02+ visceral leishmaniasis (VL) subjects produced significantly higher IFN-γ, IL-2 and IL-12 compared to no peptide control healthy subjects. Further, CD8+ cells from treated VL subjects produced significantly higher intracellular IFN-γ, lymphocyte proliferation and cytotoxic activity against selected peptides from the PBMCs of treated HLA-A02+ VL subjects. Thus, the CD8+ T cell specific epitopes shown in this study will speed up the development of polytope vaccines for leishmaniasis.  相似文献   

4.
A large number of researches focused on glycoproteins E1 and E2 of hepatitis C virus (HCV) aimed at the development of anti-HCV vaccines and inhibitors. Enhancement of E1/E2 expression and secretion is critical for the characterization of these glycoproteins and thus for subunit vaccine development. In this study, we designed and synthesized three signal peptide sequences based on online programs SignalP, TargetP, and PSORT, then removed and replaced the signal peptide preceding E1/E2 by overlapping the polymerase chain reaction method. We assessed the effect of this alteration on E1/E2 expression and secretion in mammalian cells, using western blot analysis, dot blot, and Galanthus nivalis agglutinin lectin capture enzyme immunoassay. Replacing the peptides preceding E1 and E2 with the signal peptides of the tissue plasminogen activator and Gaussia luciferase resulted in maximum enhancement of E1/E2 expression and secretion of E1 in mammalian cells, without altering glycosylation. Such an advance would help to facilitate both the research of E1/E2 biology and the development of an effective HCV subunit vaccine. The strategy used in this study could be applied to the expression and production of other glycoproteins in mammalian cell line-based systems.  相似文献   

5.
Hepatitis C virus (HCV) accounts for most cases of acute and chronic non-A and non-B hepatitis with serious consequences that may lead to hepatocellular carcinoma. The putative envelope glycoproteins (E1 and E2) of HCV probably play a role in the pathophysiology of the virus. In order to map the immunodominant domains of the E1 glycoprotein, two epitopes from amino acid residues 210 to 223 (P1) and 315 to 327 (P2) were predicted from the HCV sequence. Immunization of mice with the synthetic peptides conjugated to bovine serum albumin induced an antibody response, and the antisera immunoprecipitated the E1 glycoprotein (approximately 33 kDa) of HCV expressed by recombinant vaccinia virus. A panel of HCV-infected human sera was also tested with the synthetic peptides by enzyme-linked immunosorbent assay for epitope-specific responses. Of 38 infected serum samples, 35 (92.1%) demonstrated a spectrum of reactivity to the P2 peptide. On the other hand, only 17 of 38 (44.7%) serum samples were reactive to the P1 peptide. Strains of HCV exhibit a striking genomic diversity. The predicted P1 epitope showed localization in the sequence-variable region, and the P2 epitope localized in a highly conserved domain. Results from this study suggest that the E1 glycoprotein of HCV contains at least two potential antigenic epitopes. Synthetic peptides corresponding to these epitopes and antisera to these peptides may serve as the monospecific immunological reagents to further determine the role of E1 glycoprotein in HCV infection.  相似文献   

6.
In spite of genome sequences of both human and N. gonorrhoeae in hand, vaccine for gonorrhea is yet not available. Due to availability of several host and pathogen genomes and numerous tools for in silico prediction of effective B-cell and T-cell epitopes; recent trend of vaccine designing has been shifted to peptide or epitope based vaccines that are more specific, safe, and easy to produce. In order to design and develop such a peptide vaccine against the pathogen, we adopted a novel computational approache based on sequence, structure, QSAR, and simulation methods along with fold level analysis to predict potential antigenic B-cell epitope derived T-cell epitopes from four vaccine targets of N. gonorrhoeae previously identified by us [Barh and Kumar (2009) In Silico Biology 9, 1-7]. Four epitopes, one from each protein, have been designed in such a way that each epitope is highly likely to bind maximum number of HLA molecules (comprising of both the MHC-I and II) and interacts with most frequent HLA alleles (A*0201, A*0204, B*2705, DRB1*0101, and DRB1*0401) in human population. Therefore our selected epitopes are highly potential to induce both the B-cell and T-cell mediated immune responses. Of course, these selected epitopes require further experimental validation.  相似文献   

7.
We previously reported peptide vaccine candidates for HLA-A3 supertype (-A3, -A11, -A31, -A33)-positive cancer patients. In the present study, we examined whether those peptides can also induce cytotoxic T lymphocyte (CTL) activity restricted to HLA-A2, HLA-A24, and HLA-A26 alleles. Fourteen peptides were screened for their binding activity to HLA-A*0201, -A*0206, -A*0207, -A*2402, and -A*2601 molecules and then tested for their ability to induce CTL activity in peripheral blood mononuclear cells (PBMCs) from prostate cancer patients. Among these peptides, one from the prostate acid phosphatase protein exhibited binding activity to HLA-A*0201, -A*0206, and -A*2402 molecules. In addition, PBMCs stimulated with this peptide showed that HLA-A2 or HLA-A24 restricted CTL activity. Their cytotoxicity toward cancer cells was ascribed to peptide-specific and CD8+ T cells. These results suggest that this peptide could be widely applicable as a peptide vaccine for HLA-A3 supertype-, HLA-A2-, and -A24-positive cancer patients.  相似文献   

8.
HLA-B*4006 is the most common allele amongst Indians. It belongs to the 'HLA-B44 supertype' family of alleles that constitute an important component of the peptide binding repertoire in populations world over. Its peptide binding characteristics remain poorly examined. The amino acid sequence and structural considerations suggest a small, poorly hydrophobic 'F' pocket for this allele that may adversely affect the interaction with the C terminal residue of the antigenic peptide. Contribution of auxiliary anchor residues (P3) of the peptide has also been indicated. To examine these aspects by in silico analysis, HLA-B*4001, 4002, and 4006 alleles were modeled using HLA-B*4402 as a template. Eleven peptides, known to bind alleles of this family, were used for docking and molecular dynamics studies. Interaction between the amino group (main-chain) of P3 residue and Tyr99 of the alleles was seen in majority of peptide-complexes. Hydrophobic interactions between Tyr7 and Tyr159 with N terminal residues of the peptide were also seen in all the complexes. Replacement of Trp95 by leucine in HLA-B*4006 resulted in reduction of binding free energy in 8 out of 9 complexes. In summary, the analysis of the modeled structures and HLA-peptide complexes strongly supports the adverse effect of Trp95 at pocket F and the possible role of the third residue of the antigenic peptide as an auxiliary anchor in HLA-B*4006 peptide complexes. In the light of suggested promiscuous peptide binding pattern and association with risk for tuberculosis/HIV for this allele, the ascertainment of the predicted effects of Trp95 and role of P3 residue as an auxiliary anchor by this preliminary in silico analysis thus helps define direction of the further studies.  相似文献   

9.
Hepatitis C virus (HCV) is the leading cause of chronic liver disease in humans. The envelope proteins of HCV are potential candidates for vaccine development. The absence of three-dimensional (3D) structures for the functional domain of HCV envelope proteins [E1.E2] monomer complex has hindered overall understanding of the virus infection, and also structure-based drug design initiatives. In this study, we report a 3D model containing both E1 and E2 proteins of HCV using the recently published structure of the core domain of HCV E2 and the functional part of E1, and investigate immunogenic implications of the model. HCV [E1.E2] molecule is modeled by using aa205–319 of E1 to aa421–716 of E2. Published experimental data were used to further refine the [E1.E2] model. Based on the model, we predict 77 exposed residues and several antigenic sites within the [E1.E2] that could serve as vaccine epitopes. This study identifies eight peptides which have antigenic propensity and have two or more sequentially exposed amino acids and 12 singular sites are under negative selection pressure that can serve as vaccine or therapeutic targets. Our special interest is 285FLVGQLFTFSPRRHW299 which has five negatively selected sites (L286, V287, G288, T292, and G303) with three of them sequential and four amino acids exposed (F285, L286, T292, and R296). This peptide in the E1 protein maps to dengue envelope vaccine target identified previously by our group. Our model provides for the first time an overall view of both the HCV envelope proteins thereby allowing researchers explore structure-based drug design approaches.  相似文献   

10.
Several characteristics make human papillomavirus (HPV) amenable to vaccination. Anti-HPV-directed vaccines are based on the observation that HPV E6 and E7 oncoproteins are constitutively expressed in HPV-positive cervical cancer and may serve as tumor rejection antigens. Five HPV types (16, 18, 31, 33, and 45) account for 80% of cervical cancer. Until now, the type of immune response capable of mediating an effective antitumor response has not been defined. In order to define the anticancer-directed immune response in situ, we characterized CD4(+) and CD8(+) sorted T cells from peripheral blood lymphocytes, freshly harvested tumor tissue, and tumor-infiltrating lymphocytes (TIL) from a patient with cervical cancer. The HLA-DR-restricted CD4(+) T-cell receptor VB16-, VA10-, VA21-, and VA22-positive CD4(+) T-cell line derived from TIL recognizes autologous HLA-DR*0402(+) (HPV33(+)) cervical cancer cells, as determined by gamma interferon secretion. Testing of different peptides spanning the E7 gene revealed that the HPV33(73-87) peptide ASDLRTIQQLLMGTV represents the immunodominant epitope which can also be presented by the DR*0401 allele to TIL. Such major histocompatibility complex class II-presented peptides represent attractive candidates to augment T-cell responses directed against autologous tumor cells.  相似文献   

11.
E1 and E2 glycoproteins are structural components of hepatitis C virus (HCV) virion. They are involved in cellular receptors interaction, neutralising antibodies elicitation, and viral morphogenesis. They are considered as major candidates for anti-HCV vaccine. In this report, we first expressed tandem E1E2 as well as C-terminally truncated E1 fragment and C-terminally truncated E2 fragment, respectively, in Escherichia coli cells and the proteins were purified to homogenesis. All the purified proteins can react specifically with patient sera. Both purified chimeric protein E1E2 and protein E2 can interact with a putative cellular receptor CD81, while purified protein E1 cannot interact with CD81. The sera of rabbit immunized with the E1E2 inhibited the binding of E2 protein to the major extracellular loop of human CD81 and reacted with both proteins E1 and E2, respectively. Anti-E1 and E2 antibodies can be generated simultaneously in the rabbit immunized with the E1E2, and the titers of antibodies were 63 or 56% higher than the titers induced by E1 or E2 alone, respectively. The results suggest that E1 and E2 can enhance their immunogenicity each other in chimeric protein E1E2 and the E. coli-derived chimeric protein E1E2 and corresponding antisera can be used as an useful tools in anti-HCV vaccine research.  相似文献   

12.
One of the major drawbacks limiting the use of synthetic peptide vaccines in genetically distinct populations is the fact that different epitopes are recognized by T cells from individuals displaying distinct major histocompatibility complex molecules. Immunization of mice with peptide (181-195) from the immunodominant 43 kDa glycoprotein of Paracoccidioides brasiliensis (gp43), the causative agent of Paracoccidioidomycosis (PCM), conferred protection against infectious challenge by the fungus. To identify immunodominant and potentially protective human T-cell epitopes in gp43, we used the TEPITOPE algorithm to select peptide sequences that would most likely bind multiple HLA-DR molecules and tested their recognition by T cells from sensitized individuals. The 5 most promiscuous peptides were selected from the gp43 sequence and the actual promiscuity of HLA binding was assessed by direct binding assays to 9 prevalent HLA-DR molecules. Synthetic peptides were tested in proliferation assays with peripheral blood mononuclear cells (PBMC) from PCM patients after chemotherapy and healthy controls. PBMC from 14 of 19 patients recognized at least one of the promiscuous peptides, whereas none of the healthy controls recognized the gp43 promiscuous peptides. Peptide gp43(180-194) was recognized by 53% of patients, whereas the other promiscuous gp43 peptides were recognized by 32% to 47% of patients. The frequency of peptide binding and peptide recognition correlated with the promiscuity of HLA-DR binding, as determined by TEPITOPE analysis. In silico prediction of promiscuous epitopes led to the identification of naturally immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous patient population exposed to P. brasiliensis. The combination of several such epitopes may increase the frequency of positive responses and allow the immunization of genetically distinct populations.  相似文献   

13.
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed “clean linear B cell epitopes,” and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.  相似文献   

14.
Over the past decades, membranotropic peptides such as positively charged cell-penetrating peptides (CPPs) or amphipathic antimicrobial peptides (AMPs) have received increasing interest in order to improve therapeutic agent cellular uptake.As far as we are concerned, we were interested in studying HCV fusion peptides as putative anchors. Two peptides, HCV6 and HCV7, were identified and conjugated to a fluorescent tag NBD and tested for their interaction with liposomes as model membranes. DSC and spectrofluorescence analyses demonstrate HCV7 propensity to insert or internalize in vesicles containing anionic lipids DMPG whereas no activity was observed with zwitterionic DMPC. This behavior could be explained by the peptide sequence containing a cationic arginine residue. On the contrary, HCV6 did not exhibit any membranotropic activity but was the only sequence able to induce liposomes' fusion or aggregation monitored by spectrofluorescence and DLS. This two peptides mild activity was related to their inefficient structuration in contact with membrane mimetics, which was demonstrated by CD and NMR experiments.Altogether, our data allowed us to identify two promising membrane-active peptides from E1 and E2 HCV viral proteins, one fusogenic (HCV6) and the other membranotropic (HCV7). The latter was also confirmed by fluorescence microscopy with CHO cells, indicating that HCV7 could cross the plasma membrane via an endocytosis process. Therefore, this study provides new evidences supporting the identification of HCV6 as the HCV fusion peptide as well as insights on a novel membranotropic peptide from the HCV-E2 viral protein.  相似文献   

15.
Enterotoxigenic Escherichia coli causes diarrhea mostly in children under the age of 5 years in developing countries as well as individuals travelling to endemic regions. Every year globally there are 1.7 million cases of diarrhea, at present there are no available vaccines for ETEC therefore demand of an effective vaccine is urgently needed to recuperate diarrhea. So here, we are emphasizing on immuno-informatics approaches to develop an epitope-based vaccine against a global threat disease diarrhea. In this study, 4915 proteins of enterotoxigenic Escherichia coli proteome were screened for the identification of potential antigens that can be used as a good vaccine candidate. Binding of the promiscuous epitopes with Major Histocompatibility Complex (MHC) class I molecules, antigenicity, allergenicity, adhesion properties, population coverage, epitope conservancy and toxicity of the predicted epitopes were analyzed. Three epitopes NAIIFSPLL, AQTNNGQAN and ATDAAGSAR were found most antigenic in comparison to other epitopes predicted with the highest VaxiJen score above 1.7. Further the binding stability of the epitope and allele complex were validated by using in silico docking study. The epitope NAIIFSPLL and ATDAAGSAR have shown the highest binding score of ?4.5 and ?4.16 kcal/mol with HLA-B*5102 and HLA-A*6810 MHC class I allele, respectively. These two predicted epitopes are considered to have high potential to trigger a T cell-mediated immune response and could be a good choice in designing epitope-based vaccines against enterotoxigenic Escherichia coli after further investigation. Thus, in silico analysis results recommended the future development of an epitope vaccine that would be helpful in controlling the diarrheal infections worldwide.  相似文献   

16.
We describe a peptide-based strategy for hepatitis C virus (HCV) vaccine design that exploits synthetic peptides representing antibody epitopes of the hypervariable region 1 (HVR1) of the E2 glycoprotein and also less variable regions immediately downstream of HVR1. These epitopes were linked to a T-helper (T(h)) epitope (KLIPNASLIENCTKAEL) derived from the Morbillivirus canine distemper virus. Antibody titres induced by the two vaccine candidates T(h)-A (E2 amino acid 384-414) and T(h)-B (E2 amino acid 390-414) were significantly higher than those produced against vaccines lacking the T(h) epitope (P<0.05). Mice inoculated with the vaccine candidates T(h)-C (E2 amino acids 412-423) and T(h)-F (E2 amino acids 436-447) emulsified in complete Freund's adjuvant each elicited antibody titres that were significantly higher than those elicited by T(h)-E (E2 amino acids 396-407) and T(h)-D (E2 amino acids 432-443) (P<0.01). Antisera obtained from mice inoculated with the epitope vaccines T(h)-A, T(h)-B, T(h)-D and T(h)-E bound to E2 expressed at the surface of 293T cells that had been transfected with E1E2. Furthermore, IgG from the sera of mice inoculated with four of the vaccine candidates, T(h)-A, T(h)-C, T(h)-D and T(h)-E, inhibited the entry of HCV/human immunodeficiency virus pseudoparticles (HCVpps) into Huh-7 cells. These results demonstrate the potential of synthetic peptide-based constructs in the delivery of potential neutralizing epitopes that are present within the viral envelope of HCV.  相似文献   

17.
Monoclonal antibody D32.10 produced by immunizing mice with a hepatitis C virus (HCV)-enriched pellet obtained from plasmapheresis of a chronically HCV1b-infected patient binds HCV particles derived from serum of different HCV1a- and HCV1b-infected patients. Moreover, this monoclonal has been shown to recognize both HCV envelope proteins E1 and E2. In an attempt to provide novel insight into the membrane topology of HCV envelope glycoproteins E1 and E2, we localized the epitope recognized by D32.10 on the E1 and/or E2 sequence using Ph.D.-12 phage display peptide library technology. Mimotopes selected from the phage display dodecapeptide library by D32.10 shared partial similarities with 297RHWTTQGCNC306 of the HCV E1 glycoprotein and with both 613YRLWHYPCT621 and 480PDQRPYCWHYPPKPC494 of the HCV E2 glycoprotein. Immunoreactivity of D32.10 with overlapping peptides corresponding to these three HCV regions confirmed these localizations and suggested that the three regions identified are likely closely juxtaposed on the surface of serum-derived particles as predicted by the secondary model structure of HCV E2 derived from the tick-borne encephalitis virus E protein. This assertion was supported by the detection of specific antibodies directed against these three E1E2 regions in sera from HCV-infected patients.  相似文献   

18.
We have optimized the induction of antiviral cytotoxic T lymphocytes (CTL) in rhesus macaques by a lipopeptide vaccine containing seven peptides from simian immunodeficiency virus (SIV) Nef and Gag proteins and a strong T-helper peptide from tetanus toxoid (TT) that is promiscuous in humans (peptide TT 830-846). Two of the eight immunized macaques showed T-helper (Th) cell proliferation and a specific synthesis of gamma interferon in response to TT 830-846 peptide. They also showed multispecific cytotoxic activity against three to five of the immunizing SIV peptides. These results show the importance of a strong specific type 1 Th response for inducing a multispecific CTL response in vivo, which is essential for the development of an anti-human immunodeficiency virus vaccine.  相似文献   

19.
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b‐based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV‐B), which is closely related to HCV, was generated. The chimera between HCV and GBV‐B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non‐human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.  相似文献   

20.
The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g. cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV‐related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium‐mediated transient expression technology. The wild‐type dimer (E1E2) and a variant without an N‐glycosylation site in the E2 polypeptide (E1E2?N6) were expressed, and appropriate N‐glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell‐expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti‐HCV IgM for both antigens; however, the E1E2?N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N‐glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti‐HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low‐cost oral vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号