首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.  相似文献   

2.
Muscle actin and fructose-1,6-bisphosphate aldolase (aldolase) were chemically crosslinked to produce an 80 kDa product representing one subunit of aldolase linked to one subunit of actin. Hydroxylamine digestion of the crosslinked product resulted in two 40.5 kDa fragments, one that was aldolase linked to the 12 N-terminal residues of actin. Brownian dynamics simulations of muscle aldolase and GAPDH with F-actin (muscle, yeast, and various mutants) estimated the association free energy. Mutations of residues 1-4 of muscle actin to Ala individually or two in combination of the first four residues reduced the estimated binding free energy. Simulations showed that muscle aldolase binds with the same affinity to the yeast actin as to the double mutated muscle actin; these mutations make the N-terminal of muscle actin identical to yeast, supporting the conclusion that the actin N-terminus participates in binding. Because the depth of free energy wells for yeast and the double mutants is less than for native rabbit actin, the simulations support experimental findings that muscle aldolase and GAPDH have a higher affinity for muscle actin than for yeast actin. Furthermore, Brownian dynamics revealed that the lower affinity of yeast actin for aldolase and GAPDH compared to muscle actin, was directly related to the acidic residues at the N-terminus of actin.  相似文献   

3.
In the CSN including the spinal cord, NG2 proteoglycan is a marker of oligodendrocyte progenitors. To elucidate the dynamics of the endogenous neural stem (progenitor) cells in adult rats with spinal cord injury (SCI), we examined an immunohistochemical analysis of NG2, GFAP, and 3CB2, a specific marker of radial glia (RG). SD rats were divided into a SCI group (n = 25) and a sham-operated group (n = 5). In the injury group, laminectomy was performed at Th11–12 and contusive compression injury was created by applying a weight of 30 g for 10 min. Rats were sacrificed at 24 h, and 1, 4, 8 and 12 weeks post-injury. Frozen 20-μ m sections of tissue 5 and 10 mm rostral and caudal to the epicenter of injury were prepared. Immunohistochemistry was performed using antibodies against NG2, GFAP and 3CB2. At 4 weeks after injury, NG2-positive glial cells arose from below the pial surface as bipolar cells with processes extending throughout the entire white matter. NG2 expression peaked at 4 weeks after injury, showing a 7-fold increase compared to the 24 h after injury. The NG2-positive cells with processes which increased in the white matter of the spinal cord were GFAP-positive and also co-localized with 3CB2 antigen. The pattern of NG2 expression of these cells was temporally and spatially different from the pattern of NG2 expression that accumulated around the hemorrhagic and necrotic epicenter. These results suggest that NG2 positive cells which derived from subpial layer, may have some lineage to RG after SCI in adult rodents.  相似文献   

4.
We have used yeast two-hybrid screens and biochemical methods to identify glycolytic enzymes that interact with subcellular structures in hypoxic maize seedlings. As binding domain-bait fusion constructs, we have cloned actin, cytosolic aldolase, the three sucrose synthase (SUS) isoforms SUS1, SUS3, and SH1 as well as the SNF1-related protein kinase into yeast and identified cytosolic isoforms of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase, tubulin, and mitochondrial porin voltage-dependent anion channel protein (VDAC) as well as protein kinases and proteins involved in ubiquitinylation and proteasome-linked degradation as interacting activation domain-prey clones. The results were further confirmed using overlay blots (VDAC) as well as co-polymerization and co-precipitation assays (tubulin and actin). Some results were obtained that support the idea of metabolite and modification effects on the association, namely guanosine triphosphate (GTP)/MgCl2 was necessary for the binding of enolase to actin. GAPDH is inactivated upon association with tubulin but then serves to stabilize the microtubules. The findings support the idea of the dynamic formation of locally associated complexes of enzymes involved in sucrose breakdown and glycolysis in plant cells depending on their metabolic state.  相似文献   

5.
1.To study proteins transported with actin in axons, we pulse-labeled motoneurons in the chicken sciatic nerve with [35S]methionine and, 1–20 days later, isolated actin and its binding proteins by affinity chromatography of Triton soluble nerve extracts on DNase I–Sepharose. The DNase I-purified proteins were electrophoresed on two-dimensional gels and the specific activity of the radioactively labeled protein spots was estimated by fluorography.2.In addition to actin, which binds specifically to DNase I, a small number of other proteins were labeled, including established actin monomer binding proteins and a protein of 36 kDa and pI 8.5. On the basis of its molecular mass, pI, amino acid composition, and immunostaining, the unrecognized protein was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH).3.The high-affinity binding of GAPDH to actin was confirmed by incubation of Triton-soluble nerve extracts with either mouse anti-GAPDH (or antiactin) and indirect immunomagnetic separation with Dynabeads covalently linked to sheep anti-mouse antibody. Analysis by one-dimensional gel electrophoresis and immunoblotting showed that actin and GAPDH were the main proteins isolated by these methods.4.Analysis of labeled nerves at 12 and 20 days after pulse labeling showed that GAPDH and actin were transported at the same rate, i.e., 3–5 mm/day, which corresponds to slow component b of axonal transport. These proteins were not associated with rapidly transported proteins that accumulated proximal to a ligation 7 cm from the spinal cord 9 hr after injection of radioactivity.5.Our results indicate that GAPDH and actin are transported as a complex in axons and raise the possibility that GAPDH could act as a chaperone for monomeric actin, translocating it to intraaxonal sites for exchange with or assembly into actin filaments. Alternatively, actin could be involved in translocating and anchoring GAPDH to specialized sites in axons and nerve terminals that require a source of ATP by glycolysis.  相似文献   

6.
Brownian dynamics (BD) was used to simulate the binding of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to G- and F-actin. High-resolution three-dimensional models (X-ray and homology built) of the proteins were used in the simulations. The electrostatic potential about each protein was predicted by solving the linearized Poisson-Boltzmann equation for use in BD simulations. The BD simulations resulted in complexes of GAPDH with G- or F-actin involving positively charged surface patches on GAPDH (Lyses 24, 69, 110 and 114) and negatively charged residues of the N- and C-termini (Asps 1, 25 and 363 and Glus 2, 4, 224 and 364) of actin. The actin residues all belong to subdomain 1. Although the positively charged surface patches of GAPDH are not close enough to each other to enhance their electrostatic potential, occasionally two subunits of the GAPDH tetramer may simultaneously interact with two neighboring monomers of F-actin. These results are different from those of fructose-1,6-bisphosphate aldolase, where quaternary structure directly influenced binding by two subunits combining their electrostatic potentials (see previous study, Ouporov et al., 1999, Biophys. J. 76: 17-27). Instead, GAPDH uses its quaternary structure to span the distance between two different actin subunits so that it can interact with two different actin subunits simultaneously.  相似文献   

7.
The time between the excision and cryofixation of a biopsy is most important regarding its elemental composition as demostrated by an investigation of the thyroid glands of rats and pigs. Biopsies taken and cryofixed immediately served as control specimens. Biopsies that were allowed to stand at room temperature for 20 min before cryofixation and specimens cryofixed at 1 h post mortem were also investigated. Significant changes in the ion concentration of the cells and colloid were apparent in biopsies in which cryofixation was delayed for 20 min and in thyroids cryofixed 1 h post mortem. It was demonstrated that redistribution of electrolytes occurs within 1h post mortem and that similar changes occur in biopsies allowed to stand for 20 min at room temperature before cryofixation. The results stress the importance of immediate cryofixation after surgical excision of a biopsy. This is especially important since numerous elemental changes due to delayed cryofixation resemble those which occur in pathological processes.  相似文献   

8.
The effects of 5 weeks of unilateral lower limb suspension (ULLS) and flywheel resistance exercise (RE) on skeletal muscle protein composition were examined in thirty-one subjects (40 +/- 8y), divided into three groups: ULLS, ULLS+RE, and RE. Pre and post biopsy samples were examined for protein concentration, myosin heavy chain (MHC) and actin concentration. VL protein concentration of the three groups did not change. Soleus protein concentration following ULLS decreased (p<0.05). MHC and actin content of the VL and soleus were unaltered. Muscle mass changed from pre to post: ULLS -11% (VL), -11% (soleus), both p<0.05; ULLS+RE +9%, p<0.05; RE +6%, P<0.05. Therefore, the increase or decrease in VL muscle mass over 5 weeks occurred while maintaining protein, MHC and actin. However, soleus muscle atrophy occurred at the expense of other muscle proteins, since MHC and actin were maintained and protein concentrations decreased.  相似文献   

9.
The aim of the study was to test the following hypotheses: (i) that endotoxin injected 40 min prior to death can be detected in rat organs post mortem and (ii) that endotoxin levels do not change with increasing time post mortem. Rats were injected with or without endotoxin in buffered saline, 40 min prior to being killed. Endotoxin levels in rat organs were assessed using a Limulus amoebocyte assay. The effect of storage time post mortem was assessed by following various storage regimes at 25 degrees C and 8 degrees C. Significant differences (P = < 0.001) in endotoxin levels of all samples tested were found between rats injected with and without endotoxin. A significant increase in detectable endotoxin was observed between 0 h and 6 h post mortem in rats injected with or without endotoxin. No difference in detectable endotoxin levels in the kidney, liver and spleen was observed from 30 h to 102 h post mortem in rats injected with or without endotoxin. In rats injected with endotoxin, detectable endotoxin levels in the heart were raised between 0 h and 6 h, 6 h and 54 h, and 30 h and 78 h. Endotoxin injected into rats 40 min prior to death can be detected post mortem. For rats injected with saline or endotoxin prior to death levels in the kidney, liver and spleen were not affected by storage at 8 degrees C for 30-102 h, after initial storage at room temperature for 6 h. Levels of endotoxin detected in the hearts of rats injected with saline were not affected by storage up to 102 h. In rats injected with endotoxin prior to death, detectable levels in the heart were significantly affected by increasing time in storage.  相似文献   

10.

Background  

Analysis of RNA expression using real-time PCR (qRT-PCR) traditionally includes reference genes (RG) as an internal control. This practice is being questioned as it becomes increasingly clear that RG may vary considerably under certain experimental conditions. Thus, the validity of a particular RG must be determined for each experimental setting. We used qRT-PCR to measure the levels of six RG, which have been reported in the literature to be invariant. The RG were analyzed in human myoblast cultures under differentiation conditions. We examined the expression by qRT-PCR of mRNA encoding Beta-actin (ACTB), Beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), peptidylprolyl isomerase A (PPIA), TATA box binding protein (TBP) and ribosomal protein, large, P0 (RPLPO). The mRNA expression of the following genes of interest (GOI) were analyzed: skeletal muscle alpha 1 actin (ACTA1), myogenin/myogenic factor 4 (MYOG), embryonic skeletal muscle myosin heavy chain 3 (MYH3) and the activity of creatine phosphokinase (CK). The geNorm, NormFinder and BestKeeper software programs were used to ascertain the most suitable RG to normalize the RNA input.  相似文献   

11.
The microcompartmentation of aldolase and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was investigated in four different cell types (3T3 cells, SV 40 transformed 3T3 cells, mouse fibroblasts, chick embryo cardiomyocytes) combining cell permeabilization and indirect immunofluorescence technique. Permeabilization of the cells prior to fixation released the soluble fractions, whilst the total amount of enzymes was preserved in nonpermeabilized cells. Both enzymes exist in a soluble as well as in a structure-bound form. The soluble fraction of aldolase and GAPDH is distributed homogeneously throughout the cytoplasm, excluding the nucleus and vesicles. The permeabilization-resistant form is associated with the actin cytoskeleton. A considerable amount of both enzymes is located in the perinuclear region and cannot be attributed to a definite structure. Comparing the staining patterns of aldolase and GAPDH in four different cell types we found that the distribution of the enzymes corresponds with diverse forms of actin cytoskeletal organization of these cells. The codistribution is maintained in cells treated with cytochalasin D.  相似文献   

12.
The cytoplasmic domain of band 3, the main intrinsic protein of the erythrocyte membrane, possesses binding sites for a variety of other proteins of the membrane and the cytoplasm, including the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase. We have studied the stoichiometry of the complexes of human band 3 protein and GAPDH and the competition by aldolase for the binding sites. In addition, we have tried to verify the existence of mixed band 3/GAPDH/aldolase complexes, which could represent the nucleus of a putative glycolytic multienzyme complex on the erythrocyte membrane. The technique applied was analytical ultracentrifugation, in particular sedimentation equilibrium analysis, on mixtures of detergent-solubilized band 3 and dye-labelled GAPDH, in part of the experiments supplemented by aldolase. The results obtained were analogous to those reported for the binding of hemoglobin, aldolase and band 4.1 to band 3: (1) the predominant or even sole band 3 oligomer forming the binding site is the tetramer. (2) The band 3 tetramer can bind up to four tetramers of GAPDH. (3) The band 3/GAPDH complexes are unstable. (4) Artificially stabilized band 3 dimers also represent GAPDH binding sites. In addition it was found that aldolase competes with GAPDH for binding to the band 3 tetramer, and that ternary complexes of band 3 tetramers, GAPDH and aldolase do exist.  相似文献   

13.
Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation-promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, four-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds around the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C terminus with its active site and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure, a novel naphthol phosphate-based inhibitor of aldolase was identified, and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.  相似文献   

14.
Colour is an important quality parameter of broiler meat influencing the consumer buying behaviour. The alterations of the colour after slaughter are related to the oxidative status of the tissue. This in turn is influenced by an interaction between the mitochondria and the antioxidative enzymes. In this study, breast muscles were collected from hens and cocks of a commercial line slaughtered at the ages of 28 and 41 day. Analysis of the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) was performed with samples obtained 20 min and 48 h after slaughter (post mortem, p.m.), whereas the mitochondrial respiratory activity was analysed in permeabilised breast muscle fibres collected 20 min p.m. The carcass characteristics of breast muscle and leg weight as well as breast yield were significantly higher, and the leg yields lower, in the 41-day-old broiler. The 28-day-old hens and cocks had comparable carcass characteristics (P > 0.05), whereas 41-day-old cocks had significantly higher carcass, breast and leg weight in comparison to the hens. The pH20 min p.m. and the L*48 h p.m. were significantly higher, and the a* and b* values of the 20 min and 48 h p.m. samples as well as the drip loss were significantly lower in the 41-day-old broiler. Mitochondrial respiratory rates were comparable (P > 0.05) between the 28- and 41-day-old cocks and hens. The same result could be found with regard to the activities of the SOD, GPx and GR except for lower activities of the SOD20 min p.m. and higher of the GR48 h min p.m. in the 41-day-old broiler. The concentrations of thiobarbituric acid-reactive substances were generally higher in the breast muscles of the 41-day-old broiler. Assorting the data according to their mean pH20 min p.m. indicates a positive influence of higher pH values (>6.34) on the mitochondrial function, whereas a low pH20 min p.m. results in tendentially and significantly higher activities of the antioxidative enzymes and drip loss values. These results indicate a relation between the meat quality and the oxidative metabolism as well as antioxidative capacity of the meat.  相似文献   

15.
The skeletal muscle specific Ca(2)+/calmodulin-dependent protein kinase (CaMKIIbeta(M)) is localized to the sarcoplasmic reticulum (SR) by an anchoring protein, alphaKAP, but its function remains to be defined. Protein interactions of CaMKIIbeta(M) indicated that it exists in complex with enzymes involved in glycolysis at the SR membrane. The kinase was found to complex with glycogen phosphorylase, glycogen debranching enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and creatine kinase in the SR membrane. CaMKIIbeta(M) was also found to assemble with aldolase A, GAPDH, enolase, lactate dehydrogenase, creatine kinase, pyruvate kinase, and phosphorylase b kinase from the cytosolic fraction. The interacting proteins were substrates of CaMKIIbeta(M), and their phosphorylation was enhanced in a Ca(2+)- and calmodulin (CaM)-dependent manner. The CaMKIIbeta(M) could directly phosphorylate GAPDH and markedly increase ( approximately 3.4-fold) its activity in a Ca(2+)/CaM-dependent manner. These data suggest that the muscle CaMKIIbeta(M) isoform may serve to assemble the glycogen-mobilizing and glycolytic enzymes at the SR membrane and specifically modulate the activity of GAPDH in response to calcium signaling. Thus, the activation of CaMKIIbeta(M) in response to calcium signaling would serve to modulate GAPDH and thereby ATP and NADH levels at the SR membrane, which in turn will regulate calcium transport processes.  相似文献   

16.
Abstract: We have previously shown that cytosine arabinoside (AraC)-induced apoptosis of cerebellar granule cells (CGCs) results in an increase of a 38-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). Antisense oligonucleotides to GAPDH mRNA afford acutely plated CGCs significant protection against AraC-induced apoptosis. We used differential centrifugation to examine which subcellular components are affected. Treated and untreated cells were sonicated in 0.32 M sucrose and sequentially centrifuged at 1,000, 20,000, and 200,000 g , to obtain crude nuclear, mitochondrial, microsomal, and cytosolic fractions. Western blotting showed that the levels of GAPDH protein were markedly increased in the 1,000- and 20,000- g pellets. The levels in the cytosolic supernatant were decreased dramatically by AraC in acutely plated CGCs but not in cells 24 h after plating. It is noteworthy that although GAPDH protein in the pellet fractions increased, the dehydrogenase activity of GAPDH decreased. Two other dehydrogenases, lactate dehydrogenase (EC 1.1.1.27) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49), were not similarly affected, suggesting that the effect was GAPDH specific. These observations suggest that GAPDH levels change in specific organelles during apoptosis for reasons that are separate from its function as a glycolytic enzyme. The accumulation of GAPDH protein in specific subcellular loci may play a role in neuronal apoptosis.  相似文献   

17.
—Guinea pigs were killed by asphyxiation with nitrogen and the soluble proteins were extracted from the brain at various times post mortem. The quantity of extractable brain protein decreased by 21 per cent when the animals remained at room temperature for 2 h post mortem. This decrease was not a consequence of extensive proteolysis or variations in blood volume but was probably a result of precipitation. After death, the pH of the brain fell rapidly to a minimum of ~6CE4 within about 35 min. Examination of the patterns of brain proteins after acrylamide gel electrophoresis showed a concomitant decrease in the content of several protein bands.  相似文献   

18.
The role of aldolase as a true F- and G-actin binding protein, including modulating actin polymerization, initiating bundling, and giving rise to supramolecular structures that emanate from actin fibrils, has been established using indirect immunofluorescence, permeabilization of XTH-2 cells and keratocytes, and microinjection of fluorescence-labeled aldolase. In addition, binding to intermediate filaments, vimentin, and cytokeratins has been demonstrated. In permeabilized cells in the presence of fructose-1,6-bisphosphate (20-2000 microM) aldolase shifts from association with actin fibres to intermediate filaments. Plenty of free binding sites on microtubules have been revealed by addition of fluorochromed aldolase derived from rabbit skeletal muscle. However, endogenous aldolase was never found associated with microtubules. Differences in actin polymerization in the presence of aldolase as revealed by pyrene-labeled actin fluorimetry and viscosimetry were explained by electron microscopy showing the formation of rod-like structures (10 nm wide, 20-60 nm in length) by association of aldolase with G-actin, which prevents further polymerization. Upon the addition of fructose-1,6-bisphosphate, G-actin-aldolase mixture polymerizes to a higher viscosity and forms stiffer filaments than pure actin of the same concentration.  相似文献   

19.
When Toxoplasma gondii egresses from the host cell, glyceraldehyde‐3‐phosphate dehydrogenase 1 (GAPDH1), which is primary a glycolysis enzyme but actually a quintessential multifunctional protein, translocates to the unique cortical membrane skeleton. Here, we report the 2.25 Å resolution crystal structure of the GAPDH1 holoenzyme in a quaternary complex providing the basis for the molecular dissection of GAPDH1 structure–function relationships Knockdown of GAPDH1 expression and catalytic site disruption validate the essentiality of GAPDH1 in intracellular replication but we confirmed that glycolysis is not strictly essential. We identify, for the first time, S‐loop phosphorylation as a novel, critical regulator of enzymatic activity that is consistent with the notion that the S‐loop is critical for cofactor binding, allosteric activation and oligomerization. We show that neither enzymatic activity nor phosphorylation state correlate with the ability to translocate to the cortex. However, we demonstrate that association of GAPDH1 with the cortex is mediated by the N‐terminus, likely palmitoylation. Overall, glycolysis and cortical translocation are functionally decoupled by post‐translational modifications.  相似文献   

20.
Fiber type specificity for expression of all three rat skeletal muscle pyruvate dehydrogenase kinase (PDK) isoforms (PDK1, 2, and 4) was determined in fed and 24-h fasted rats. PDK activity and isoform protein and mRNA contents were determined in white gastrocnemius (WG; fast-twitch glycolytic), red gastrocnemius (RG; fast-twitch oxidative), and soleus (Sol; slow-twitch oxidative) muscles. PDK activity was lower in WG compared with oxidative muscles (RG, Sol) in both fed and fasted rats. PDK activities from fed muscles were 0.12 +/- 0.04, 0.30 +/- 0.01, and 0.36 +/- 0.08 min(-1) in WG, Sol, and RG, respectively, and increased in fasted muscles (0.36 +/- 0.09, 0.68 +/- 0.18, and 0.80 +/- 0.14 min(-1)). This correlated with increased PDK4 protein and to a lesser extent with PDK4 mRNA. PDK2 protein was not different between fiber types in fed or fasted rats, but PDK2 mRNA content was twofold greater in RG from fasted rats compared with fed rats. PDK1 was unaltered by fasting in all muscle types at both the protein and mRNA level, but in both fed and fasted rats had much greater protein and mRNA content in the oxidative vs. glycolytic muscles. In conclusion, PDK activity and PDK1 and 4 protein and mRNA were lower in glycolytic vs. oxidative muscles from fed and fasted rats. Fasting for 24 h induced a two- to threefold increase in PDK activity that was mainly due to increases in PDK4 protein and mRNA. PDK1 and 2 protein and mRNA were generally unaltered by fasting in all fiber types, except for increased PDK2 mRNA in the fast oxidative fibers. Because the PDK isoforms vary greatly in their kinetic properties, their relative proportions in the three fiber types at any given time during fasting could significantly alter the acute regulation of the pyruvate dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号