首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid similarity often needs to be considered in DNA sequence comparison to elucidate gene functions. We propose a Smith-Waterman-like algorithm which considers amino acid similarity and insertions/deletions in sequences at the DNA level and at the protein level in a hybrid manner. The algorithm is applied to cDNA sequences of Oryza sativa and those of Arabidopsis thaliana. The results are compared with the results of application of NCBI's tblastx program (which compares the sequences in the BLAST manner after translation). It is shown that the present algorithm is very helpful in discovering nucleotide insertions/deletions originating from experimental errors as well as amino acid insertions/deletions due to evolutionary reasons.  相似文献   

2.
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding.  相似文献   

3.
SeqMap is a tool for mapping large amount of short sequences to the genome. It is designed for finding all the places in a reference genome where each sequence may come from. This task is essential to the analysis of data from ultra high-throughput sequencing machines. With a carefully designed index-filtering algorithm and an efficient implementation, SeqMap can map tens of millions of short sequences to a genome of several billions of nucleotides. Multiple substitutions and insertions/deletions of the nucleotide bases in the sequences can be tolerated and therefore detected. SeqMap supports FASTA input format and various output formats, and provides command line options for tuning almost every aspect of the mapping process. A typical mapping can be done in a few hours on a desktop PC. Parallel use of SeqMap on a cluster is also very straightforward.  相似文献   

4.
With the advent of DNA sequencing technologies, more and more reference genome sequences are available for many organisms. Analyzing sequence variation and understanding its biological importance are becoming a major research aim. However, how to store and process the huge amount of eukaryotic genome data, such as those of the human, mouse and rice, has become a challenge to biologists. Currently available bioinformatics tools used to compress genome sequence data have some limitations, such as the requirement of the reference single nucleotide polymorphisms (SNPs) map and information on deletions and insertions. Here, we present a novel compression tool for storing and analyzing Genome ReSequencing data, named GRS. GRS is able to process the genome sequence data without the use of the reference SNPs and other sequence variation information and automatically rebuild the individual genome sequence data using the reference genome sequence. When its performance was tested on the first Korean personal genome sequence data set, GRS was able to achieve ~159-fold compression, reducing the size of the data from 2986.8 to 18.8 MB. While being tested against the sequencing data from rice and Arabidopsis thaliana, GRS compressed the 361.0 MB rice genome data to 4.4 MB, and the A. thaliana genome data from 115.1 MB to 6.5 KB. This de novo compression tool is available at http://gmdd.shgmo.org/Computational-Biology/GRS.  相似文献   

5.
Ptak SE  Petrov DA 《Genetics》2002,162(3):1233-1244
Studies of "dead-on-arrival" transposable elements in Drosophila melanogaster found that deletions outnumber insertions approximately 8:1 with a median size for deletions of approximately 10 bp. These results are consistent with the deletion and insertion profiles found in most other Drosophila pseudogenes. In contrast, a recent study of D. melanogaster introns found a deletion/insertion ratio of 1.35:1, with 84% of deletions being shorter than 10 bp. This discrepancy could be explained if deletions, especially long deletions, are more frequently strongly deleterious than insertions and are eliminated disproportionately from intron sequences. To test this possibility, we use analysis and simulations to examine how deletions and insertions of different lengths affect different components of splicing and determine the distribution of deletions and insertions that preserve the original exons. We find that, consistent with our predictions, longer deletions affect splicing at a much higher rate compared to insertions and short deletions. We also explore other potential constraints in introns and show that most of these also disproportionately affect large deletions. Altogether we demonstrate that constraints in introns may explain much of the difference in the pattern of deletions and insertions observed in Drosophila introns and pseudogenes.  相似文献   

6.
To study the mechanisms for local evolutionary changes in DNA sequences involving slippage-type insertions and deletions, an alignment approach is explored that can consider the posterior probabilities of alignment models. Various patterns of insertion and deletion that can link the ancestor and descendant sequences are proposed and evaluated by simulation and compared by the Markov chain Monte Carlo (MCMC) method. Analyses of pseudogenes reveal that the introduction of the parameters that control the probability of slippage-type events markedly augments the probability of the observed sequence evolution, arguing that a cryptic involvement of slippage occurrences is manifested as insertions and deletions of short nucleotide segments. Strikingly, approximately 80% of insertions in human pseudogenes and approximately 50% of insertions in murids pseudogenes are likely to be caused by the slippage-mediated process, as represented by BC in ABCD --> ABCBCD. We suggest that, in both human and murids, even very short repetitive motifs, such as CAGCAG, CACACA, and CCCC, have approximately 10- to 15-fold susceptibility to insertions and deletions, compared to nonrepetitive sequences. Our protocol, namely, indel-MCMC, thus seems to be a reasonable approach for statistical analyses of the early phase of microsatellite evolution.  相似文献   

7.
Levenshtein dissimilarity measures are used to compare sequences in application areas including coding theory, computer science and macromolecular biology. In general, they measure sequence dissimilarity by the length of a shortest weighted sequence of insertions, deletions and substitutions required, to transform one sequence into another. Those Levenshtein dissimilarity measures based on insertions and deletions are analyzed by a model involving valuations on a partially ordered set. The model reveals structural relationships among poset, valuation and dissimilarity measure. As a consequence, certain Levenshtein dissimilarity measures are shown to be metrics characterized by betweenness properties and computable in terms of well-known measures of sequence similarity. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant A-4142.  相似文献   

8.
A 5500 base-pair fragment including the beta-globin gene downstream from codon 122 and about 4000 base-pairs of its 5' flanking sequence was cloned from chimpanzee DNA and thoroughly sequenced before being compared with the corresponding human sequence: 88 point differences (83 substitutions and 5 deletions or insertions of 1 base-pair) were detected as well as seven more important deletion/insertion events. These changes occur preferentially in two kinds of structure. First, 40% of the CpG dinucleotides present in either human or chimpanzee sequences are affected by nucleotide variations. This corresponds to a divergence level considerably higher than that expected. Second, most short repeated sequences found in the 5' extragenic sequence are involved in mutational events (amplification or contraction of the number of basic motifs as well as point substitutions or deletions/insertions of 1 base-pair). Considering the very low level of nucleotide sequence divergence between these two closely related species, our data provide direct evidence for CpG and tandem array instability.  相似文献   

9.
Multiple sequence alignment (MSA) is a crucial first step in the analysis of genomic and proteomic data. Commonly occurring sequence features, such as deletions and insertions, are known to affect the accuracy of MSA programs, but the extent to which alignment accuracy is affected by the positions of insertions and deletions has not been examined independently of other sources of sequence variation. We assessed the performance of 6 popular MSA programs (ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, and T-COFFEE) and one experimental program, PRANK, on amino acid sequences that differed only by short regions of deleted residues. The analysis showed that the absence of residues often led to an incorrect placement of gaps in the alignments, even though the sequences were otherwise identical. In data sets containing sequences with partially overlapping deletions, most MSA programs preferentially aligned the gaps vertically at the expense of incorrectly aligning residues in the flanking regions. Of the programs assessed, only DIALIGN-T was able to place overlapping gaps correctly relative to one another, but this was usually context dependent and was observed only in some of the data sets. In data sets containing sequences with non-overlapping deletions, both DIALIGN-T and MAFFT (G-INS-I) were able to align gaps with near-perfect accuracy, but only MAFFT produced the correct alignment consistently. The same was true for data sets that comprised isoforms of alternatively spliced gene products: both DIALIGN-T and MAFFT produced highly accurate alignments, with MAFFT being the more consistent of the 2 programs. Other programs, notably T-COFFEE and ClustalW, were less accurate. For all data sets, alignments produced by different MSA programs differed markedly, indicating that reliance on a single MSA program may give misleading results. It is therefore advisable to use more than one MSA program when dealing with sequences that may contain deletions or insertions, particularly for high-throughput and pipeline applications where manual refinement of each alignment is not practicable.  相似文献   

10.
The H1° gene has a long 3′ untranslated region (3′UTR) of 1,125 nucleotides in the rat and 1,310 in humans. Analysis of the sequences shows that they have features of simple DNA that suggest involvement of replication slippage in their evolution. These features include the length imbalance between the rat and human sequences; the abundance of single-base repeats, two-base runs and other simple motifs clustered along the sequence; and the presence of single-base repeat length polymorphisms in the rat and mouse sequences. Pairwise comparisons show numerous short insertions/deletions, often flanked by direct repeats. In addition, a proportion of short insertions/deletions results from length differences in conserved single-base repeats. Quantification of the sequence simplicity shows that simple sequences have been more actively incorporated in the human lineage than in the rodent lineage. The combination of insertions/deletions and nucleotide substitutions along the sequence gives rise to three main regions of homology: a highly variable central region flanked by more conserved regions nearest the coding region and the polyA addition site. Correspondence to: P. Suau  相似文献   

11.
A mathematical method has been developed in order to search for latent periodicity in protein amino-acid and other symbolical sequences using dynamic programming and random matrices. The method allows the detection of the latent periodicity with insertions and deletions at positions that are unknown beforehand. The developed method has been applied to search for the periodicity in the amino-acid sequences of several proteins and in the euro/dollar exchange rate since 2001. The presence of a long period with insertions and deletions in amino-acid sequences is shown. The period length of seven amino acids is observed in the proteins that contain supercoiled regions (a coiled-coil structure) as well as of six, five, or more amino acids. The existence of the period length of 6 and 7 days, as well as 24 and 25 h in the analyzed financial time series is observed; note that this periodicity is detectable only for insertions and deletions. The causes that underlie the occurrence of the latent periodicity with insertions and deletions in amino-acid sequences and financial time series are discussed.  相似文献   

12.
DNA sequencing and restriction mapping provide us with information on DNA sequence evolution within populations, from which the phylogenetic relationships among the sequences can be inferred. Mutations such as base substitutions, deletions, insertions and transposable element insertions can be identified in each sequence. Theoretical study of this type of sequence evolution has been initiated recently. In this paper, population genetical models for sequence evolution under multiple types of mutation are developed. Models of infinite population size with neutral mutation, infinite population size with deleterious mutation and finite population size with neutral mutation are considered.  相似文献   

13.
14.
The annotated Arabidopsis genome sequence was exploited as a tool for carrying out comparative analyses of the Arabidopsis and Capsella rubella genomes. Comparison of a set of random, short C. rubella sequences with the corresponding sequences in Arabidopsis revealed that aligned protein-coding exon sequences differ from aligned intron or intergenic sequences in respect to the degree of sequence identity and the frequency of small insertions/deletions. Molecular-mapped markers and expressed sequence tags derived from Arabidopsis were used for genetic mapping in a population derived from an interspecific cross between Capsella grandiflora and C. rubella. The resulting eight Capsella linkage groups were compared to the sequence maps of the five Arabidopsis chromosomes. Fourteen colinear segments spanning approximately 85% of the Arabidopsis chromosome sequence maps and 92% of the Capsella genetic linkage map were detected. Several fusions and fissions of chromosomal segments as well as large inversions account for the observed arrangement of the 14 colinear blocks in the analyzed genomes. In addition, evidence for small-scale deviations from genome colinearity was found. Colinearity between the Arabidopsis and Capsella genomes is more pronounced than has been previously reported for comparisons between Arabidopsis and different Brassica species.  相似文献   

15.
The sequence requirements for splicing of the Tetrahymena pre-rRNA have been examined by altering the rRNA gene to produce versions that contain insertions and deletions within the intervening sequence (IVS). The altered genes were transcribed and the RNA tested for self-splicing in vitro. A number of insertions (8-54 nucleotides) at three locations had no effect on self-splicing activity. Two of these insertions, located at a site 5 nucleotides preceding the 3'-end of the IVS, did not alter the choice of the 3' splice site. Thus the 3' splice site is not chosen by its distance from a fixed point within the IVS. Analysis of deletions constructed at two sites revealed two structures, a hairpin loop and a stem-loop, that are entirely dispensable for IVS excision in vitro. Three other regions were found to be necessary. The regions that are important for self-splicing are not restricted to the conserved sequence elements that define this class of intervening sequences. The requirement for structures within the IVS for pre-rRNA splicing is in sharp contrast to the very limited role of IVS structure in nuclear pre-mRNA splicing.  相似文献   

16.
17.
As next-generation sequencing projects generate massive genome-wide sequence variation data, bioinformatics tools are being developed to provide computational predictions on the functional effects of sequence variations and narrow down the search of casual variants for disease phenotypes. Different classes of sequence variations at the nucleotide level are involved in human diseases, including substitutions, insertions, deletions, frameshifts, and non-sense mutations. Frameshifts and non-sense mutations are likely to cause a negative effect on protein function. Existing prediction tools primarily focus on studying the deleterious effects of single amino acid substitutions through examining amino acid conservation at the position of interest among related sequences, an approach that is not directly applicable to insertions or deletions. Here, we introduce a versatile alignment-based score as a new metric to predict the damaging effects of variations not limited to single amino acid substitutions but also in-frame insertions, deletions, and multiple amino acid substitutions. This alignment-based score measures the change in sequence similarity of a query sequence to a protein sequence homolog before and after the introduction of an amino acid variation to the query sequence. Our results showed that the scoring scheme performs well in separating disease-associated variants (n = 21,662) from common polymorphisms (n = 37,022) for UniProt human protein variations, and also in separating deleterious variants (n = 15,179) from neutral variants (n = 17,891) for UniProt non-human protein variations. In our approach, the area under the receiver operating characteristic curve (AUC) for the human and non-human protein variation datasets is ∼0.85. We also observed that the alignment-based score correlates with the deleteriousness of a sequence variation. In summary, we have developed a new algorithm, PROVEAN (Protein Variation Effect Analyzer), which provides a generalized approach to predict the functional effects of protein sequence variations including single or multiple amino acid substitutions, and in-frame insertions and deletions. The PROVEAN tool is available online at http://provean.jcvi.org.  相似文献   

18.
MOTIVATION: A quantitative study of molecular evolutionary events such as substitutions, insertions and deletions from closely related genomes requires (1) an accurate multiple sequence alignment program and (2) a method to annotate the insertions and deletions that explain the 'gaps' in the alignment. Although the former requirement has been extensively addressed, the latter problem has received little attention, especially in a comprehensive probabilistic framework. RESULTS: Here, we present Indelign, a program that uses a probabilistic evolutionary model to compute the most likely scenario of insertions and deletions consistent with an input multiple alignment. It is also capable of modifying the given alignment so as to obtain a better agreement with the evolutionary model. We find close to optimal performance and substantial improvement over alternative methods, in tests of Indelign on synthetic data. We use Indelign to analyze regulatory sequences in Drosophila, and find an excess of insertions over deletions, which is different from what has been reported for neutral sequences. AVAILABILITY: The Indelign program may be downloaded from the website http://veda.cs.uiuc.edu/indelign/ SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.  相似文献   

19.

Background  

Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Although many MSA algorithms have been developed, there is still room for improvement in accuracy and speed. In the alignment of a family of protein sequences, global MSA algorithms perform better than local ones in many cases, while local ones perform better than global ones when some sequences have long insertions or deletions (indels) relative to others. Many recent leading MSA algorithms have incorporated pairwise alignment information obtained from a mixture of sources into their scoring system to improve accuracy of alignment containing long indels.  相似文献   

20.

Background

The very recent availability of fully sequenced individual human genomes is a major revolution in biology which is certainly going to provide new insights into genetic diseases and genomic rearrangements.

Results

We mapped the insertions, deletions and SNPs (single nucleotide polymorphisms) that are present in Craig Venter''s genome, more precisely on chromosomes 17 to 22, and compared them with the human reference genome hg17. Our results show that insertions and deletions are almost absent in L1 and generally scarce in L2 isochore families (GC-poor L1+L2 isochores represent slightly over half of the human genome), whereas they increase in GC-rich isochores, largely paralleling the densities of genes, retroviral integrations and Alu sequences. The distributions of insertions/deletions are in striking contrast with those of SNPs which exhibit almost the same density across all isochore families with, however, a trend for lower concentrations in gene-rich regions.

Conclusions

Our study strongly suggests that the distribution of insertions/deletions is due to the structure of chromatin which is mostly open in gene-rich, GC-rich isochores, and largely closed in gene-poor, GC-poor isochores. The different distributions of insertions/deletions and SNPs are clearly related to the two different responsible mechanisms, namely recombination and point mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号