首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   

2.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

3.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

4.
Pre-plant soil fumigation with methyl bromide and host resistance were compared for managing the southern root-knot nematode (Meloidogyne incognita) in pepper. Three pepper cultivars (Carolina Cayenne, Keystone Resistant Giant, and California Wonder) that differed in resistance to M. incognita were grown in field plots that had been fumigated with methyl bromide (98% CH₃Br : 2% CCl₃NO₂ [w/w]) before planting or left untreated. Carolina Cayenne is a well-adapted cayenne-type pepper that is highly resistant to M. incognita. The bell-type peppers Keystone Resistant Giant and California Wonder are intermediate to susceptible and susceptible, respectively. None of the cultivars exhibited root galling in the methyl bromide fumigated plots and nematode reproduction was minimal (<250 eggs/g fresh root), indicating that the fumigation treatment was highly effective in controlling M. incognita. Root galling of Carolina Cayenne and nematode reproduction were minimal, and fruit yields were not reduced in the untreated plots. The root-galling reaction for Keystone Resistant Giant was intermediate (gall index = 2.9, on a scale of 1 to 5), and nematode reproduction was moderately high. However, yields of Keystone Resistant Giant were not reduced in untreated plots. Root galling was severe (gall index = 4.3) on susceptible California Wonder, nematode reproduction was high, and fruit yields were reduced (P ≤ 0.05) in untreated plots. The resistance exhibited by Carolina Cayenne and Keystone Resistant Giant provides an alternative to methyl bromide for reducing yield losses by southern root-knot nematodes in pepper. The high level of resistance of Carolina Cayenne also suppresses population densities of M. incognita.  相似文献   

5.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

6.
Two years of giant star grass, Cynodon nlemluensis var. nlemfuensis, in a field plot markedly reduced the incidence of the root-knot nematodes. Tomato planted following the grass showed very little or no root galling and the yield was thrice that of tomato planted on an adjacent field plot previously cropped to tomato. Replicated greenhouse experiments indicated that six varieties of Cynodon were resistant to root-knot nematode but it took up to 6 months of grass growth to appreciably lower the nematode population. The nematodes were eliminated from the soil by all the six grass varieties after 18 months.  相似文献   

7.
A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle.  相似文献   

8.
The reniform nematode (Rotylenchulus reniformis) causes significant cotton (Gossypium hirsutum) losses in the southeastern United States. The research objective was to describe the effects of two resistant G. barbadense lines (cultivar TX 110 and accession GB 713) on development and fecundity of reniform nematode. Nematode development and fecundity were evaluated on the resistant lines and susceptible G. hirsutum cultivar Deltapine 16 in three repeated growth chamber experiments. Nematode development on roots early and late in the infection cycle was measured at set intervals from 1 to 25 d after inoculation (DAI) and genotypes were compared based on the number of nematodes in four developmental stages (vermiform, swelling, reniform, and gravid). At 15, 20, and 25 DAI, egg production by individual females parasitizing each genotype was measured. Unique reniform nematode developmental patterns were noted on each of the cotton genotypes. During the early stages of infection, infection and development occurred 1 d faster on susceptible cotton than on the resistant genotypes. Later, progression to the reniform and gravid stages of development occurred first on the susceptible genotype, followed by G. barbadense cultivar TX 110, and finally G. barbadense accession GB 713. Egg production by individual nematodes infecting the three genotypes was similar. This study corroborates delayed development previously reported on G. barbadense cultivar TX 110 and is the first report of delayed infection and development associated with G. barbadense accession GB 713. The different developmental patterns in the resistant genotypes suggest that unique or additional loci may confer resistance in these two lines.  相似文献   

9.
Granular and liquid commercial humates, with micronutrients, and a microbial fermentation product were compared in several combinations with nematicides for their effects on cotton lint yield and root-knot nematode suppression. Fumigant nematicides effectively reduced cotton root galling caused by root-knot nematodes, and cotton lint yields increased. Organophosphates and carbamates were not effective. Occasionally, cotton lint yields were increased or maintained with combination treatments o f humates, micronutrients, and a microbial fermentation product, but galling o f cotton roots by root-knot nematodes was usually not reduced by these treatments.  相似文献   

10.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

11.
Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C).  相似文献   

12.
Nine resistant processing tomato (Lycopersicon esculentum) cultivars and advanced lines were compared with four susceptible cultivars in 1,3-dichloropropene-fumigated and nontreated plots on Meloidogyne incognita-infested sites over 3 years. Yield of all resistant genotypes grown in nontreated and nematicide-treated plots did not differ and was greater than yield of susceptible genotypes. M. incognita initial soil population densities caused 39.3-56.5% significant (P = 0.05) yield suppressions of susceptible genotypes. Nematode injury to susceptible plants usually caused both fruit soluble solids content and pH to increase significantly (P = 0.05). Only trace nematode reproduction occurred on resistant genotypes in nontreated plots, whereas large population density increases occurred on susceptible genotypes. Slightly greater nematode reproduction occurred on resistant genotypes at the southern desert location, where soil temperature exceeded 30 C, than at other locations. At two locations resistant MOX 3076 supported greater reproduction than other resistant genotypes.  相似文献   

13.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.  相似文献   

14.
The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant-parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a control without the bacterium) and six plant-nematode combinations which were Meloidogyne incognita on cotton, corn, and soybean; M. arenaria on peanut; Heterodera glycines on soybean; and Paratrichodorus minor on corn. Wood 1R had no effect on final numbers of M. arenaria, P. minor, or H. glycines; however, final numbers of M. incognita were lower when seeds were treated with Wood1R than left untreated, and this reduction was consistent among host plants. Population densities of Wood1R were greater on the roots of corn than on the other crops, and the bacterium was most effective in suppressing M. incognita on corn, with an average reduction of 41%. Despite high population densities of Wood1R on corn, the bacterium was not able to suppress numbers of P. minor. When comparing the suppression of M. incognita on corn in natural and steam-heated soil, egg production by the nematode was suppressed in natural compared to steamed soil, but the presence of Wood1R did not result in additional suppression of the nematodes in the natural soil. These data indicate that P. fluorescens strain Wood1R has the capacity to inhibit some populations of plant-parasitic nematodes. However, consistent suppression of nematodes in natural soils seems unlikely.  相似文献   

15.
One-year crop rotations with corn or highly resistant soybean were evaluated at four locations for their effect on Rotylenchulus reniformis population levels and yield of a subsequent cotton crop. Four nematicide (aldicarb) regimes were included at two of the locations, and rotation with reniform-susceptible soybean was included at the other two locations. One-year rotations to corn or resistant soybean resulted in lower R. reniformis population levels (P ≤ 0.05) than those found in cotton at three test sites. However, the effect of rotation on nematode populations was undetectable by mid-season when cotton was grown the following year. Cotton yield following a one-year rotation to resistant soybean increased at all test locations compared to continuous cotton, and yield following corn increased at three locations. The optimum application rate for aldicarb in this study was 0.84 kg a.i./ha in furrow. Side-dress applications of aldicarb resulted in yield increases that were insufficient to cover the cost of application in 3 of the 4 years.  相似文献   

16.
Few sources of resistance to root-knot nematodes (Meloidogyne incognita) in upland cotton (Gossypium hirsutum) have been utilized to develop resistant cultivars, making this resistance vulnerable to virulence in the pathogen population. The objectives of this study were to determine the inheritance of resistance in five primitive accessions of G. hirsutum (TX1174, TX1440, TX2076, TX2079, and TX2107) and to determine allelic relations with the genes for resistance in the genotypes Clevewilt-6 (CW) and Wild Mexico Jack Jones (WMJJ). A half-diallel experimental design was used to create 28 populations from crosses among these seven sources of resistance and the susceptible cultivar DeltaPine 90 (DP90). Resistance to M. incognita was measured as eggs per g roots in the parents, F(1) and F(2) generations of each cross. The resistance in CW and WMJJ was inherited as recessive traits, as reported previously for CW, whereas the resistance in the TX accessions was inherited as a dominant trait. Chi square analysis of segregation of resistance in the F(2) was used to estimate the numbers of genes that conditioned resistance. Resistance in CW and WMJJ appeared to be a multigenic trait whereas the resistance in the TX accessions best fit either a one or two gene model. The TX accessions were screened with nine SSR markers linked to resistance loci in other cotton genotypes. The TX accessions lacked the allele amplified by SSR marker CR316 and linked to resistance in CW and other resistant genotypes derived from this source. Four of five TX genotypes lacked the amplification products from the marker BNL1231 that is also associated with the resistant allele on Chromosome 11 in WMJJ, CW, NemX, M120 RNR and Auburn 634 RNR. However, all five TX genotypes produced the same amplification products from three SSR markers linked to the resistant allele on Chromosome 14 in M120 RNR and M240 RNR. The TX accessions have unique resistance genes that are likely to be useful in efforts to develop resistant cotton cultivars with increased durability.  相似文献   

17.
The root-knot nematode Meloidogyne incognita is a damaging pest of cotton (Gossypium hirsutum) worldwide. A major gene (rkn1) conferring resistance to M. incognita was previously identified on linkage group A03 in G. hirsutum cv. Acala NemX. To determine the patterns of segregation and phenotypic expression of rkn1, F1, F2, F2:3, BC1F1 and F2:7 recombinant inbred lines (RIL) from intraspecific crosses between Acala NemX and a closely related susceptible cultivar Acala SJ-2 were inoculated in greenhouse tests with M. incognita race 3. The resistance phenotype was determined by the extent of nematode-induced root galling and nematode egg production on roots. Suppression of root galling and egg production was highly correlated among individuals in all tests. Root galling and egg production on heterozygous plants did not differ from the susceptible parent phenotype 125 d or more after inoculation, but were slightly suppressed with shorter screening (60 d), indicating that rkn1 behaved as a recessive gene or an incompletely recessive gene, depending on the screening condition. In the RIL, rkn1 segregated in an expected 1 resistant: 1 susceptible ratio for a major resistance gene. However, within the resistant class, 21 out of 34 RIL were more resistant than the resistant parent Acala NemX, indicating transgressive segregation. These results suggest that rkn1-based resistance in G. hirsutum can be enhanced in progenies of crosses with susceptible genotypes. Allelism tests and molecular genetic analysis are needed to determine the relationship of rkn1 to other M. incognita resistance sources in cotton.  相似文献   

18.
Reproduction of reniform nematode Rotylenchulus reniformis on 139 soybean lines was evaluated in a greenhouse in the summer of 2001. Cultivars and lines (119 total) were new in the Arkansas and Mississippi Soybean Testing Programs, and an additional 20 were submitted by C. Overstreet, Louisiana State Extension Nematologist. A second test of 32 breeding lines and 2 cultivars from the Clemson University soybean breeding program was performed at the same time under the same conditions. Controls were the resistant cultivars Forrest and Hartwig, susceptible Braxton, and fallow infested soil. Five treatment replications were planted in sandy loam soil infested with 1,744 eggs and vermiform reniform nematodes, grown for 10 weeks in 10 cm-diam.- pots. Total reniform nematodes extracted from soil and roots was determined, and a reproductive factor (final population (Pf)/ initial inoculum level (Pi)) was calculated for each genotype. Reproduction on each genotype was compared to the reproduction on the resistant cultivar Forrest (RF), and the log ratio [log₁₀(RF + 1) is reported. Cultivars with reproduction not significantly different from Forrest (log ratio) were not suitable hosts, whereas those with greater reproductive indices were considered suitable hosts. These data will be useful in the selection of soybean cultivars to use in rotation with cotton or other susceptible crops to help control the reniform nematode and to select useful breeding lines as parent material for future development of reniform nematode resistant cultivars and lines.  相似文献   

19.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.  相似文献   

20.
Studies were conducted to examine under differing temperatures (12, 16, 20, 24, 28, and 32 C) the penetration anti development of Meloidogyne hapla in resistant lines ''298'' and ''Nev. Syn XX'', and susceptible ''Lahontan'' and ''Ranger'' hardy-type alfalfas. The results indicated that resistance to M. hapla was similar to that previously described for M. incognita in nonhardy alfalfa. Although initial penetration in resistant seedlings was similar to that of susceptible seedlings, nematode larvae failed to establish and develop in root tissues and nematode numbers subsequently declined. In susceptible seedlings, nematode development proceeded rapidly, and egg production began after 5 weeks. Temperature had little influence on the nematode development except to slow the response at the lower temperatures. Other studies were conducted to verify a previously reported immune (no penetration) reaction to M. hapla by the ''Vernal'' selection ''M-4''. When compared to the resistant (penetration without nematode development) Vernal selection ''M-9'' under differing temperatures (20, 24, 28, and 32 C), each selection was equally penetrated by M. hapla but at a lower level than in susceptible Ranger cuttings. Generally, no root galling was observed in either M-4 or M-9; however, very slight galling was found 35 days after inoculation on about 50% of these cuttings when grown at 32 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号