首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of milk trace mineral homeostasis requires the temporal integration of three main processes, (A) mineral uptake into the secretory mammary epithelial cell (MEC); followed by (B) mineral secretion from MEC into the alveoli lumen of the mammary gland for sequestration in milk; and then (C) milk release in response to suckling. Trace mineral requirements of term infants are generally met by exclusive breast-feeding through about the first 6 months of life and although milk zinc (Zn), iron (Fe), and copper (Cu) concentrations are relatively refractory to maternal trace mineral status, they normally decline throughout lactation. Recently, Zn-, Fe- and Cu-specific transporters have been identified that regulate trace element uptake and efflux in various cell types; however, there is currently little information available regarding the processes through which the mammary gland regulates milk trace mineral transport. The homology of trace mineral transporters between species permits the utilization of rodent models to examine the regulation of mammary gland mineral transport. Therefore, we have used the lactating rat to determine changes in mammary gland Zn, Fe and Cu transporter expression and localization that occur throughout lactation and in response to maternal trace mineral deficiency in hope of elucidating some of the changes which occur during mammary gland trace element homeostasis and also may be occurring in lactating women.  相似文献   

2.
1. The mode of uptake of the precursors of milk fat by the mammary gland of the lactating goat has been examined by infusing radioactive fatty acids, glucerol or doubly labelled triglycerides into the mammary artery or jugular vein of animals surgically prepared to permit samples of arterial and venous blood to be withdrawn without disturbance to the animal. 2. Acetate was taken up by the mammary gland and incorporated into milk fat. The decrease in the specific radioactivity of blood acetate across the gland was evidence of acetate production, but there was no significant release of labelled lipid from the mammary gland. 3. When labelled long-chain fatty acids or glycerol were infused into the lactating goat, there was extensive transfer of radioactivity into milk in spite of the absence of net uptake of substrate by the mammary gland. The decrease in the specific radioactivity of each substrate across the mammary gland, however, showed that both fatty acids and glycerol were simultaneously taken up and released by mammary tissue. 4. The infusion of chylomicra and triglyceride emulsions labelled with (3)H and (14)C revealed that both glycerol and fatty acids were released during triglyceride uptake by mammary tissue. Changes in the (3)H/(14)C ratio during the transfer of triglyceride from blood into milk showed that at least 80% of the triglyceride was hydrolysed during uptake, but the potential re-utilization of both products of hydrolysis for triglyceride synthesis in mammary tissue implied that only a minimum value could be obtained from the change in the ratio. 5. The time-course of the transfer of (3)H and (14)C into milk and lymph were closely similar after the infusion of [2-(3)H]glycerol tri[1-(14)C]oleate or of a mixture of [2-(3)H]glycerol and [1-(14)C]oleate. 6. The results were consistent with the hypothesis that plasma triglycerides are extensively or completely hydrolysed during mammary uptake.  相似文献   

3.
Responses to exogenous growth hormone were measured in lactating dairy cows surgically prepared to allow measurement of nutrient exchanges across mammary and hind-limb muscle tissues. Cows were injected daily with either saline or growth hormone, at a dose of 0.1 mg/kg liveweight, over periods of 6 days. During administration of growth hormone milk yield, milk fat content and yields of milk fat protein and lactose increased. Arterial plasma concentrations of glucose and non-esterified fatty acids were increased, uptake of glucose by leg muscle tissue decreased, lactate release from leg muscle tended to increase, mammary uptake of non-esterified fatty acids increased, blood flow to leg muscle tended to increase and blood flow to mammary tissue increased during injection of growth hormone. The results show that growth hormone affects supply to and utilization of key nutrients by tissues, resulting in the supply to the mammary gland of additional precursors for milk synthesis.  相似文献   

4.
The observation that concanavalian A can inhibit milk secretion was evaluated in an in vitro system employing minced mammary gland or isolated alveoli from lactating rats. Release of milk constituents (casein, lactose and fat globules) into the medium in the presence and absence of concanavalin A was measured during 1 or 2 h incubations. The effect of concanavalin A on glucose uptake and CO2 production of the minced tissued was also studied. Concanavalin A suppressed release of milk components at a concentration as low as 80 μg/ml of medium. Respiration of minced mammary tissue in the presence of concanavalin A (100 μg/ml of medium) was essentially the same as that of the control. The data are evidence that concanavalin A acts directly on the mammary cell in suppressing milk secretion and that the effect is not due to cytotoxicity.  相似文献   

5.
Casein micelles and fat globules are essential components of milk and are both secreted at the apical side of mammary epithelial cells during lactation. Milk fat globules are excreted by budding, being enwrapped by the apical plasma membrane, while caseins contained in transport vesicles are released by exocytosis. Nevertheless, the molecular mechanisms governing casein exocytosis are, to date, not fully deciphered. SNARE proteins are known to take part in cellular membrane trafficking and in exocytosis events in many cell types and we therefore attempted to identify those relevant to casein secretion. With this aim, we performed a detailed analysis of their expression by RT-PCR in both whole mouse mammary gland and in purified mammary acini at various physiological stages, as well as in the HC11 cell line. The expression of some regulatory proteins involved in SNARE complex formation such as Munc-13, Munc-18 and complexins was also explored. The amount of certain SNAREs appeared to be regulated depending on the physiological stage of the mammary gland. Co-immunoprecipitation experiments indicated that SNAP-23 interacted with syntaxin-6, -7 and -12, as well as with VAMP-3, -4 and -8 in mammary epithelial cells during lactation. Finally, the subcellular localisation of candidate SNAREs in these cells was determined both by indirect immunofluorescence and immunogold labelling. The present work provides important new data concerning SNARE proteins in mammary epithelial cells and points to SNAP-23 as a potential central player for the coupling of casein and milk fat globule secretion during lactation.  相似文献   

6.
The barrier function of the human mammary gland collapses if challenged with cationic drugs, causing their accumulation in milk. However, underlying molecular mechanisms are not well understood. To gain insight into the mechanism, we characterized transport of organic cations in the MCF12A human mammary gland epithelial cells, using carnitine and tetraethylammonium (TEA) as representative nutrient and xenobiotics probes, respectively. Our results show that the mammary gland cells express mRNA and proteins of human (h) novel organic cation transporters (OCTN) 1 and hOCTN2 (a Na+-dependent carnitine carrier with Na+-independent xenobiotics transport function), which belong to the solute carrier superfamily (SLC) of transporters. Other SLC OCTs such as hOCT1 and extraneuronal monoamine transporter (EMT)/hOCT3 are also expressed at mRNA levels, but hOCT2 was undetectable. We further showed mRNA expression of ATB0+ (an amino acid transporter with a Na+/Cl(-)-dependent carnitine transport activity), and Fly-like putative transporter 2/OCT6 (a splice variant of carnitine transporter 2: a testis-specific Na+-dependent carnitine transporter). TEA uptake was pH dependent. Carnitine uptake was dependent on Na+, and partly on Cl-, compatible with hOCTN2 and ATB0+ function. Modeling analyses predicted multiplicity of the uptake mechanisms with the high-affinity systems characterized by K(m) of 5.1 microM for carnitine and 1.6 mM for TEA, apparently similar to the reported hOCTN2 parameter for carnitine, and that of EMT/hOCT3 for TEA. Verapamil, cimetidine, carbamazepine, quinidine, and desipramine inhibited the carnitine uptake but required supratherapeutic concentrations, suggesting robustness of the carnitine uptake systems against xenobiotic challenge. Our findings suggest functional roles of a network of multiple SLC organic cation/nutrient transporters in human mammary gland drug transfer.  相似文献   

7.
Zinc (Zn) is required for numerous metabolic processes serving both a structural and catalytic role. The mammary gland has a unique Zn requirement resulting from the need to also transfer an extraordinary amount of Zn into milk (~0.5–1 mg Zn/day) during lactation. Impairments in this process can result in severe Zn deficiency in the nursing offspring which has adverse consequences with respect to growth and development. Moreover, dysregulated mammary gland Zn metabolism has recently been implicated in breast cancer transition, progression and metastasis, thus there is a critical need to understand the molecular mechanisms which underlie these observations. Tight regulation of Zn transporting mechanisms is critical to providing an extraordinary amount of Zn for secretion into milk as well as maintaining optimal cellular function. Expression of numerous Zn transporters has been detected in mammary gland or cultured breast cells; however, understanding the molecular mechanisms which regulate mammary Zn metabolism as well as the etiology and downstream consequences resulting from their dysregulation is largely not understood. In this review, we will summarize the current understanding of the regulation of mammary gland Zn metabolism and its regulation by reproductive hormones, with a discussion of the dysregulation of this process in breast cancer.  相似文献   

8.
We have investigated, in mice, an in vivo method for producing low-lactose milk, based on the creation of transgenic animals carrying a hybrid gene in which the intestinal lactase-phlorizin hydrolase cDNA was placed under the control of the mammary-specific alpha-lactalbumin promoter. Transgenic females expressed lactase protein and activity during lactation at the apical side of mammary alveolar cells. Active lactase was also secreted into milk, anchored in the outer membrane of fat globules. Lactase synthesis in the mammary gland caused a significant decrease in milk lactose (50-85%) without obvious changes in fat and protein concentrations. Sucklings nourished with low-lactose milk developed normally. Hence, these data validate the use of transgenic animals expressing lactase in the mammary gland to produce low-lactose milk in vivo, and they demonstrate that the secretion of an intestinal digestive enzyme into milk can selectively modify its composition.  相似文献   

9.
Alpha-lactalbumin as a lysosomal enzyme-releasing factor   总被引:1,自引:0,他引:1  
In the early stage of mammary gland involution, biochemically detectable lysosomal damage occurs. The mechanism(s) underlying this damage is not well understood. We found that alpha-lactalbumin from mouse milk induced the release of enzymes from the lysosomes of mouse mammary epithelial cells in vitro, and this induction also occurred with bovine alpha-lactalbumin. This enzyme release was accelerated by the addition of whey proteins with a molecular weight of 50 000 to 60 000. We also found that the lysosomal membrane of mammary epithelial cells had a strong affinity for alpha-lactalbumin.  相似文献   

10.
11.
Androstenedione concentrations in both plasma and milk were higher than those of testosterone throughout pregnancy. Testosterone concentration increased during pregnancy; the levels in milk were always lower than in plasma. Androstenedione concentrations increased in plasma and milk during pregnancy but the values were twice as high in milk as in plasma after Day 90. This change in androstenedione distribution suggests that the mammary gland could be active in the uptake of androstenedione from plasma to milk or that the mammary gland itself might synthesize this hormone.  相似文献   

12.
Adequate amounts of copper in milk are critical for normal neonatal development, however the mechanisms regulating copper supply to milk have not been clearly defined. PMC42-LA cell cultures representative of resting, lactating and suckled mammary epithelia were used to investigate the regulation of the copper uptake protein, CTR1. Both the degree of mammary epithelial differentiation (functionality) and extracellular copper concentration greatly impacted upon CTR1 expression and its plasma membrane association. In all three models (resting, lactating and suckling) there was an inverse correlation between extracellular copper concentration and the level of CTR1. Cell surface biotinylation studies demonstrated that as extracellular copper concentration increased membrane associated CTR1 was reduced. There was a significant increase in CTR1 expression (total and membrane associated) in the suckled gland model in comparison to the resting gland model, across all copper concentrations investigated (0–50 μM). Regulation of CTR1 expression was entirely post-translational, as quantitative real-time PCR analyses showed no change to CTR1 mRNA between all models and culture conditions. X-ray fluorescence microscopy on the differentiated PMC42-LA models revealed that organoid structures distinctively accumulated copper. Furthermore, as PMC42-LA cell cultures became progressively more specialised, successively more copper accumulated in organoids (resting<lactating<suckling), indicating a link between function and copper requirement. Based on previous data showing a function for CTR1 in copper uptake, we have concluded that under the influence of hormones and increased extracellular copper levels, CTR1 participates in uptake of copper by mammary epithelial cells, as a prerequisite for secretion of copper into milk.  相似文献   

13.
Milk copper (Cu) concentration declines and directly reflects the stage of lactation. Three Cu-specific transporters (Ctr1, Atp7A, Atp7B) have been identified in the mammary gland; however, the integrated role they play in milk Cu secretion is not understood. Whereas the regulation of milk composition by the lactogenic hormone prolactin (PRL) has been documented, the specific contribution of PRL to this process is largely unknown. Using the lactating rat as a model, we determined that the normal decline in milk Cu concentration parallels declining Cu availability to the mammary gland and is associated with decreased Atp7B protein levels. Mammary gland Cu transport was highest during early lactation and was stimulated by suckling and hyperprolactinemia, which was associated with Ctr1 and Atp7A localization at the plasma membrane. Using cultured mammary epithelial cells (HC11), we demonstrated that Ctr1 stains in association with intracellular vesicles that partially colocalize with transferrin receptor (recycling endosome marker). Atp7A was primarily colocalized with mannose 6-phosphate receptor (M6PR; late endosome marker), whereas Atp7B was partially colocalized with protein disulfide isomerase (endoplasmic reticulum marker), TGN38 (trans-Golgi network marker) and M6PR. Prolactin stimulated Cu transport as a result of increased Ctr1 and Atp7A abundance at the plasma membrane. Although the molecular mechanisms responsible for these posttranslational changes are not understood, transient changes in prolactin signaling play a role in the regulation of mammary gland Cu secretion during lactation.  相似文献   

14.
Regulatory role for amino acids in mammary gland growth and milk synthesis   总被引:5,自引:0,他引:5  
Kim SW  Wu G 《Amino acids》2009,37(1):89-95
The health and growth of mammalian neonates critically depend on the yield and composition of their mothers' milk. However, impaired lactogenesis occurs in both women in response to stress and hormonal imbalance and in primiparous sows which exhibit low voluntary feed intake and underdevelopment of mammary tissues. Because of ethical concerns over lactation research with women and children, swine is often used as an animal model to study mammary gland development and the underlying regulatory mechanisms. Available evidence from work with lactating sows shows that amino acids are not only building blocks for protein but are also key regulators of metabolic pathways critical to milk production. Particularly, arginine is the common substrate for the generation of nitric oxide (NO; a major vasodilator and angiogenic factor) and polyamines (key regulators of protein synthesis). Thus, modulation of the arginine-NO pathway may provide a new strategy to enhance the growth (including vascular growth) of mammary tissue and its uptake of nutrients, therefore improving lactation performance in mammals. In support of this proposition, supplementing 0.83% L: -arginine (as 1% L: -arginine-HCl) or 50 mg/day diethylenetriamine-NO adduct (NO donor) to diets of lactating primiparous sows increased milk production and the growth of suckling piglets. Future studies with animal models (e.g., pigs, sheep, cows, and rats) are necessary to elucidate the underlying mechanisms at molecular, cellular, tissue, and whole-body levels.  相似文献   

15.
Transmission of Caprine Arthritis Encephalitis virus (CAEV) from the mother to offspring is principally mediated by infected cells from colostrum and milk. The infection of the dam is often sub-clinical, and results in increased cellularity of milk, sometimes exacerbated by bacterial co-infections. Although monocytes are the major viral host cells, several other cell types, including epithelial mammary cells, fibroblasts and endothelial cells show low levels of in vivo infection. In vitro, however, all phenotypes of mammary gland cells are individually highly sensitive to CAEV infection. This suggests that local mechanisms act to control viral expression. Our goal is to analyse the mechanisms regulating local virus infection, including the physiological status of the mammary gland and bacterial co-infections. In this work, we present the development of a model for the in vitro reconstitution of mammary gland tissue using 3D cultures in Matrigel. Mononuclear cells from the blood are added to the 3D cultures in vitro. In these experimental conditions, the mammary cells spontaneously organize into mammospheres. Blood leucocytes migrate into the culture gel, and localize particularly at the periphery of the mammospheres. Mammospheres were susceptible to infection in vitro by CAEV, as shown by a cytopathic effect and expression of late CAEV antigen p30. This model will allow the in vitro study of virus expression, transfer of infection to mammary gland cells and interactions between the mammary gland cells, infected monocytes and immunocompetent cells. It will allow the study of mechanisms participating in the control of passage of pathogens into milk, according to the physiological and CAEV-infection status of the animal, microenvironment and the presence of bacterial co-infections.  相似文献   

16.
Acetate metabolism in the mammary gland of lactating ewes was studied by continuous infusion of radioisotopic [U-14C]sodium acetate and measurement of mammary gland arteriovenous difference and blood flow. Entry rate of acetate into the whole body averaged 75 +/- 7 mumol min-1 kg-1 liveweight and 22.1 +/- 2.7% of total CO2 production was derived from acetate. Acetate was both utilized and produced by the mammary gland. Acetate uptake was related linearly (r2 = 0.94) to arterial concentration and gross utilization of acetate accounted for 16.2 +/- 2.6% of whole-body entry rate. Endogenous acetate production by the mammary gland increased linearly (r2 = 0.90) as milk yield rose, and accounted for 25.6 +/- 2.7% of the gross mammary utilization of acetate. The proportion of mammary CO2 derived from acetate (22.5 +/- 3.9%) was similar to that of the whole body. The uptake of acetate, 3-hydroxybutyrate, esterified fatty acids and plasma free fatty acids accounted for about 25, 13, 60 and 4% of milk fatty acid carbon respectively, after correction for the oxidation of acetate, but not of the other substrates. Metabolism of acetate in the mammary glands of lactating ewes appears quantitatively more important than that in cows, but similar to that in goats.  相似文献   

17.
Little is known about the transport of iron into the mammary secretory cell and the process of milk iron secretion. The concentration of iron in milk is remarkably unaffected by maternal iron status, suggesting that the uptake of iron into the mammary gland is regulated. It is known that iron enters other cells via transferrin receptor-mediated endocytosis. This study was designed to isolate and characterize the mammary gland transferrin receptor in lactating rat mammary tissue using immunochemical techniques. The existence of functional mammary gland transferrin receptors in lactating rodents was demonstrated using radiolabel-binding techniques. Isolation of mammary transferrin receptors by affinity chromatography was confirmed using immunoelectrophoresis and slot blot analysis. The intact transferrin receptor was found to have a molecular weight of 176 kd as determined by Western blotting followed by scanning densitometry. Reduction of the receptor with beta-mercaptoethanol gave a molecular weight of 98 kd. An additional immunoreactive band of 135 kd was observed. The presence of transferrin receptors in normal lactating rat mammary tissue is likely to explain iron transport into mammary tissue for both cellular metabolism and milk iron secretion.  相似文献   

18.
19.
1. Arteriovenous differences of plasma free amino acids across the lactating mammary glands of six goats have been measured. 2. In four experiments, measurements of blood flow, amino acid arteriovenous differences, milk yield and milk nitrogen showed that the uptake of nitrogen in the form of amino acids was sufficient to provide all the nitrogen of the milk proteins synthesized in the mammary gland. 3. In the same four experiments the uptake from the plasma and output into the milk of individual amino acids per unit time were compared. The uptakes of essential amino acids and glutamic acid were approximately equal to the corresponding output figures. The uptake of serine was consistently less than the output, and the uptake of other non-essential amino acids was very variable, in some experiments being approximately equal to the output figures and in others being considerably less. 4. As in cows, there was an uptake of ornithine in all experiments, though ornithine is absent from milk. In goats, though not in cows, the uptake of arginine was consistently greatly in excess of the requirement for arginine residues in milk protein. 5. The possible significance of the uptakes of arginine and ornithine for the synthesis of serine and other non-essential amino acids in the mammary gland is discussed. 6. The importance of clamping the external pudic vein, when sampling mammary venous blood from the caudal superficial epigastric vein, is indicated.  相似文献   

20.
We have reported previously that the concentration of vitamin A (VA) in the milk of lactating rats varies with dietary VA intake, even when plasma retinol concentration is unaffected. In the current study, we investigated the role of lipolysis in the uptake of chylomicron (CM) VA into mammary tissue of lactating rats and estimated the proportion of CM-VA that is associated with the mammary gland during CM clearance. Chylomicrons containing [(3)H]VA, mainly as retinyl esters, were prepared in donor rats and administered intravenously to lactating recipient rats. Chylomicron VA rapidly disappeared from plasma and appeared in mammary tissue (maximum within 2-3 mins), followed by a decline. Concomitantly, uptake by liver increased continuously, reaching a plateau within 20-30 mins. Active lipolysis in mammary tissue was necessary for rapid VA uptake, as significantly less CM-VA was recovered in mammary tissue of postlactating rats than of lactating rats, after heparin treatment in lactating rats, or after injection of preformed CM remnants in lactating rats. [(3)H]Vitamin A uptake by mammary tissue increased linearly with CM-VA dose over a 150-fold dose range (R(2) = 0.972, P = 0.0001), suggesting a high capacity for uptake and apparent first-order assimilation of CM-VA during CM remnant formation in situ. Model-based compartmental analysis using WinSAAM predicted that approximately 42% of CM-VA marginated, that is, were temporarily removed, from plasma to the mammary glands during lipolysis and that a total of 3.8% of CM-VA was transferred to mammary tissue. The model-predicted t(1/2) for CM remnants was 3.04 mins. The metabolism of CM-VA in the lactating mammary gland, in proportion to VA absorption and CM-VA contents, may explain how milk VA concentration varies even when plasma retinol levels are unchanged. The mechanism of CM margination and mammary gland uptake described here for VA may be similar for other lipophilic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号