首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A genome-wide scan was performed to detect quantitative trait loci (QTLs) for osteochondrosis (OC) and osteochondrosis dissecans (OCD) in horses. The marker set comprised 260 microsatellites. We collected data from 211 Hanoverian warmblood horses consisting of 14 paternal half-sib families. Traits used were OC (fetlock and/or hock joints affected), OCD (fetlock and/or hock joints affected), fetlock OC, fetlock OCD, hock OC, and hock OCD. The first genome scan included 172 microsatellite markers. In a second step 88 additional markers were chosen to refine putative QTLs found in the first scan. Genome-wide significant QTLs were located on equine chromosomes 2, 4, 5, and 16. QTLs for fetlock OC and hock OC partly overlapped on the same chromosomes, indicating that these traits may be genetically related. QTLs reached the chromosome-wide significance level on eight different equine chromosomes: 2, 3, 4, 5, 15, 16, 19, and 21. This whole-genome scan was a first step toward the identification of candidate genome regions harboring genes responsible for equine OC. Further investigations are necessary to refine the map positions of the QTLs already identified for OC. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Navicular disease is characterized by a progressive degenerative alteration of the equine podotrochlea. In this study, we refined a previously identified quantitative trait locus (QTL) on horse chromosome 10 for the abnormal development of canales sesamoidales (DCS) of the navicular bone in Hanoverian warmblood horses. Genotyping was done in 192 Hanoverian warmblood horses from 17 paternal half-sib groups. The whole marker set comprised 45 markers including seven newly developed microsatellites and 13 single nucleotide polymorphisms (SNPs) within positional candidate genes. Chromosome-wide significant QTL were confirmed and refined for DCS on horse chromosome (ECA) 10 at 0.16-2.70 Mb and at 14.45-36.37 Mb. Nine microsatellites and three SNP markers reached the highest multipoint Zmeans and LOD scores at 19.34-20.38 Mb and at 23.17-30.73 Mb with genome-wide error probabilities of P<0.05. In addition, a significant association of a SNP within VSTM1 and a significant haplotype-trait association within IRF3 could be shown. These results support a possible role of the candidate genes VSTM1 and IRF3 within the QTL on ECA10 for DCS. This study is a further step towards the identification of the genes responsible for navicular disease in Hanoverian warmblood horses.  相似文献   

3.
In this report, we provide 29 new informative microsatellites distributed over a region of 21 Mb on horse chromosome (ECA) 5 and refine a quantitative trait locus (QTL) for fetlock osteochondrosis dissecans (OCD) to a genome-wide significant interval between 78.03 and 90.23 Mb on ECA5. Genotyping was performed in 211 Hanoverian warmblood horses from 14 paternal half-sib groups. Within this OCD-QTL, collagen type XXIV alpha 1 was identified as a potential functional candidate gene for equine osteochondrosis. This report is a further step towards unravelling the genes that cause equine osteochondrosis.  相似文献   

4.
In this study, we refine a quantitative trait locus for equine osteochondrosis (OC) on horse chromosome (ECA) 2 to a genome-wide significant interval at 20.08-30.94 Mb. The marker set contained 27 newly developed microsatellites equidistantly distributed over ECA2 and 44 nucleotide polymorphisms, located in 16 positional candidate genes for OC. Genotyping was performed in 211 Hanoverian horses from 14 paternal half-sib groups. A NCDN-associated SNP and haplotype were significantly associated with OC in fetlock and/or hock joints. This study is a further step towards the identification of genes responsible for OC in horses.  相似文献   

5.
Navicular disease or podotrochlosis is one of the main causes of progressive forelimb lameness in warmblood horses. The objective of this study was to refine a quantitative trait locus on horse chromosome 2 for radiological alterations in the contour of the navicular bone (RAC) in Hanoverian warmblood horses. Genotyping was performed in 192 Hanoverian warmblood horses from 17 paternal half-sib groups. The marker set was extended to 58 informative microsatellites including nine newly developed microsatellites. QTL for RAC could be delineated at 32.50–43.13 Mb and a further new QTL for RAC could be identified at 59.08–65.14 Mb. The markers ABGe342 and ABGe343 reached the highest multipoint Z mean and LOD scores at 34.42 and 35.23 Mb with genome-wide error probabilities of P  = 0.013 and P  = 0.064. In addition, significant associations of markers and haplotypes within the QTL could be shown. The results support the location of the QTL on ECA2 associated with RAC. This work is a further step towards the development of a marker test for navicular disease in Hanoverian warmblood horses.  相似文献   

6.
The aim of this study was to identify quantitative trait loci (QTLs) for pathologic changes in the navicular bone in Hanoverian warmblood horses. Seventeen paternal half-sib groups comprising 192 individuals were analyzed in a whole-genome scan. These families included 144 progeny and grandchildren, which were randomly chosen from the Hanoverian warmblood. Three different traits were considered: deformed canales sesamoidales and radiographic changes in the contour and in the structure of the navicular bone. The genome scan included in total 214 highly polymorphic microsatellite markers. The putatively linked genomic regions on equine chromosomes (ECA) 2, 3, 10, and 15 were refined using 53 additional microsatellites. Chromosome-wide significant QTLs were located on five different equine chromosomes (ECA2, 3, 4, 10, and 26). Genome-wide significant QTLs were on ECA2 at 48 cM and on ECA10 from 45.5 to 49.8 cM. This study was a first step to get more insight into the molecular genetic determination of radiologic changes in the equine navicular bone. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The aim of this study was to identify quantitative trait loci (QTL) for osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in fetlock joints in a whole-genome scan of 219 South German Coldblood horses. Symptoms of OC and POF were checked by radiography in 117 South German Coldblood horses at a mean age of 17 months. The radiographic examination comprised the fetlock and hock joints of all limbs. The genome scan included 157 polymorphic microsatellite markers. All microsatellite markers were equally spaced over the 31 autosomes and the X chromosome, with an average distance of 17.7 cM and a mean polymorphism information content (PIC) of 63%. Sixteen chromosomes harbouring putative QTL regions were further investigated by genotyping the animals with 93 additional markers. QTL that had chromosome-wide significance by non-parametric Z-means and LOD scores were found on 10 chromosomes. This included seven QTL for fetlock OC and one QTL on ECA18 associated with hock OC and fetlock OC. Significant QTL for POF in fetlock joints were located on equine chromosomes 1, 4, 8, 12 and 18. This genome scan is an important step towards the identification of genes responsible for OC in horses.  相似文献   

8.
Equine guttural pouch tympany (GPT) is a hereditary disease in foals of several breeds, including thoroughbreds, Arabian, Quarter and warmblood horses. We performed a whole-genome scan for GPT in 143 horses from five Arabian and five German warmblood families and genotyped 257 microsatellites. Chromosome-wide significant linkage was detected on ECA2 and ECA15 using multipoint non-parametric linkage analyses. Analyses stratified by sex revealed chromosome-wide significant linkage on ECA2 for fillies and chromosome-wide significant linkage on ECA15 for colts. For Arabian colts, the quantitative trait locus (QTL) on ECA15 was genome-wide significant. Haplotypes including two to four microsatellites within the QTL on ECA2 and 15 in fillies and colts, respectively, were significantly associated with GPT for both breeds. Thus, our analysis indicated sex-specific QTL, a fact which is in agreement with a two- to fourfold higher incidence of GPT in females. This is the first report of QTL for equine GPT and a first step towards identifying genes responsible for GPT.  相似文献   

9.
Show-jumping is an economically important breeding goal in Hanoverian warmblood horses. The aim of this study was a genome-wide association study (GWAS) for quantitative trait loci (QTL) for show-jumping in Hanoverian warmblood horses, employing the Illumina equine SNP50 Beadchip. For our analyses, we genotyped 115 stallions of the National State stud of Lower Saxony. The show-jumping talent of a horse includes style and ability in free-jumping. To control spurious associations based on population stratification, two different mixed linear animal model (MLM) approaches were employed, besides linear models with fixed effects only and adaptive permutations for correcting multiple testing. Population stratification was explained best in the MLM considering Hanoverian, Thoroughbred, Trakehner and Holsteiner genes and the marker identity-by-state relationship matrix. We identified six QTL for show-jumping on horse chromosomes (ECA) 1, 8, 9 and 26 (-log(10) P-value >5) and further putative QTL with -log(10) P-values of 3-5 on ECA1, 3, 11, 17 and 21. Within six QTL regions, we identified human performance-related genes including PAPSS2 on ECA1, MYL2 on ECA8, TRHR on ECA9 and GABPA on ECA26 and within the putative QTL regions NRAP on ECA1, and TBX4 on ECA11. The results of our GWAS suggest that genes involved in muscle structure, development and metabolism are crucial for elite show-jumping performance. Further studies are required to validate these QTL in larger data sets and further horse populations.  相似文献   

10.
Chronic pastern dermatitis (CPD), also known as chronic progressive lymphedema (CPL), is a skin disease that affects draft horses. This disease causes painful lower-leg swelling, nodule formation, and skin ulceration, interfering with movement. The aim of this whole-genome scan was to identify quantitative trait loci (QTL) for CPD in German draft horses. We recorded clinical data for CPD in 917 German draft horses and collected blood samples from these horses. Of these 917 horses, 31 paternal half-sib families comprising 378 horses from the breeds Rhenish German, Schleswig, Saxon-Thuringian, and South German were chosen for genotyping. Each half-sib family was constituted by only one draft horse breed. Genotyping was done for 318 polymorphic microsatellites evenly distributed on all equine autosomes and the X chromosome with a mean distance of 7.5 Mb. An across-breed multipoint linkage analysis revealed chromosome-wide significant QTL on horse chromosomes (ECA) 1, 9, 16, and 17. Analyses by breed confirmed the QTL on ECA1 in South German and the QTL on ECA9, 16, and 17 in Saxon-Thuringian draft horses. For the Rhenish German and Schleswig draft horses, additional QTL on ECA4 and 10 and for the South German draft horses an additional QTL on ECA7 were found. This is the first whole-genome scan for CPD in draft horses and it is an important step toward the identification of candidate genes.  相似文献   

11.
Equine guttural pouch tympany (GPT) is a hereditary condition affecting foals in their first months of life. Complex segregation analyses in Arabian and German warmblood horses showed the involvement of a major gene as very likely. Genome-wide linkage and association analyses including a high density marker set of single nucleotide polymorphisms (SNPs) were performed to map the genomic region harbouring the potential major gene for GPT. A total of 85 Arabian and 373 German warmblood horses were genotyped on the Illumina equine SNP50 beadchip. Non-parametric multipoint linkage analyses showed genome-wide significance on horse chromosomes (ECA) 3 for German warmblood at 16-26 Mb and 34-55 Mb and for Arabian on ECA15 at 64-65 Mb. Genome-wide association analyses confirmed the linked regions for both breeds. In Arabian, genome-wide association was detected at 64 Mb within the region with the highest linkage peak on ECA15. For German warmblood, signals for genome-wide association were close to the peak region of linkage at 52 Mb on ECA3. The odds ratio for the SNP with the highest genome-wide association was 0.12 for the Arabian. In conclusion, the refinement of the regions with the Illumina equine SNP50 beadchip is an important step to unravel the responsible mutations for GPT.  相似文献   

12.
A previously accomplished whole-genome scan for osteochondrosis (OC) and OC dissecans (OCD) in South German Coldblood horses using 250 microsatellite markers identified putative quantitative trait loci (QTL). A chromosome-wide significant QTL for fetlock OCD was found on Equus caballus chromosome (ECA) 4q at a relative position of 70.0-73.3 cM. The aim of this study was to analyze associations of single nucleotide polymorphisms (SNPs) in candidate genes for OC in this region. The association analysis included 32 affected and 64 unaffected horses. Three SNPs located in intron 8, intron 9, and 3'-untranslated region (UTR) of the acyloxyacyl hydrolase (AOAH) gene on ECA4q were significantly associated with OCD in fetlock joints. In order to control for systematic environmental and quantitative genetic effects, we employed a linear animal model. The association of the SNP (AJ543065:g.703A>G) in the 3'-UTR of exon 21 was confirmed in the animal model analysis and a significant additive genetic effect for fetlock OCD of 0.42 (P = 0.002) and a dominance effect of -0.32 (P = 0.03) was estimated. This is the first report on a marker in population-wide linkage disequilibrium with equine OCD in fetlock joints.  相似文献   

13.
Osteochondrosis is a developmental orthopaedic disease that occurs in horses, other livestock species, companion animal species, and humans. The principal aim of this study was to identify quantitative trait loci (QTL) associated with osteochondritis dissecans (OCD) in the Thoroughbred using a genome-wide association study. A secondary objective was to test the effect of previously identified QTL in the current population. Over 300 horses, classified as cases or controls according to clinical findings, were genotyped for the Illumina Equine SNP50 BeadChip. An animal model was first implemented in order to adjust each horse's phenotypic status for average relatedness among horses and other potentially confounding factors which were present in the data. The genome-wide association test was then conducted on the residuals from the animal model. A single SNP on chromosome 3 was found to be associated with OCD at a genome-wide level of significance, as determined by permutation. According to the current sequence annotation, the SNP is located in an intergenic region of the genome. The effects of 24 SNPs, representing QTL previously identified in a sample of Hanoverian Warmblood horses, were tested directly in the animal model. When fitted alongside the significant SNP on ECA3, two of these SNPs were found to be associated with OCD. Confirmation of the putative QTL identified on ECA3 requires validation in an independent sample. The results of this study suggest that a significant challenge faced by equine researchers is the generation of sufficiently large data sets to effectively study complex diseases such as osteochondrosis.  相似文献   

14.
15.
Osteochondrosis (OC), a disturbance in the process of endochondral ossification, is by far the most important equine developmental orthopaedic disease and is also common in other domestic animals and humans. The purpose of this study was to identify quantitative trait loci (QTL) associated with osteochondrosis dissecans (OCD) at the intermediate ridge of the distal tibia in Norwegian Standardbred (SB) using the Illumina Equine SNP50 BeadChip whole-genome single-nucleotide polymorphism (SNP) assay. Radiographic data and blood samples were obtained from 464 SB yearlings. Based on the radiographic examination, 162 horses were selected for genotyping; 80 of these were cases with an OCD at the intermediate ridge of the distal tibia, and 82 were controls without any developmental lesions in the joints examined. Genotyped horses descended from 22 sires, and the number of horses in each half-sib group ranged from 3 to 14. The population structure necessitated statistical correction for stratification. When conducting a case-control genome-wide association study (GWAS), mixed-model analyses displayed regions on chromosomes (Equus callabus chromosome - ECA) 5, 10, 27 and 28 that showed moderate evidence of association (P ≤ 5 × 10(-5); this P-value is uncorrected i.e. not adjusted for multiple comparisons) with OCD in the tibiotarsal joint. Two SNPs on ECA10 represent the most significant hits (uncorrected P=1.19 × 10(-5) in the mixed-model). In the basic association (chi-square) test, these SNPs achieved statistical significance with the Bonferroni correction (P=0.038) and were close in the permuted logistic regression test (P=0.054). Putative QTL on ECA 5, 10, 27 and 28 represent interesting areas for future research, validation studies and fine mapping of candidate regions. Results presented here represent the first GWAS of OC in horses using the recently released Illumina Equine SNP50 BeadChip.  相似文献   

16.
Recurrent airway obstruction (RAO), or ‘heaves’, is a common performance‐limiting allergic respiratory disease of mature horses. It is related to sensitization and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. In a previous study, we detected a QTL for RAO on ECA 13 in a half‐sib family of European Warmblood horses. In this study, we genotyped additional markers in the family and narrowed the QTL down to about 1.5 Mb (23.7–25.2 Mb). We detected the strongest association with SNP BIEC2‐224511 (24 309 405 bp). We also obtained SNP genotypes in an independent cohort of 646 unrelated Warmblood horses. There was no genome‐wide significant association with RAO in these unrelated horses. However, we performed a genotypic association study of the SNPs on ECA 13 in these unrelated horses, and the SNP BIEC2‐224511 also showed the strongest association with RAO in the unrelated horses (praw = 0.00037). The T allele at this SNP was associated with RAO both in the family and the unrelated horses. Thus, the association study in the unrelated animals provides independent support for the previously detected QTL. The association study allows further narrowing of the QTL interval to about 0.5 Mb (24.0–24.5 Mb). We sequenced the coding regions of the genes in the critical region but did not find any associated coding variants. Therefore, the causative variant underlying this QTL is likely to be a regulatory mutation.  相似文献   

17.
Tying-up syndrome, also known as recurrent exertional rhabdomyolysis in Thoroughbreds, is a common muscle disorder for racehorses. In this study, we performed a multipoint linkage analysis using LOKI based on the Bayesian Markov chain Monte Carlo method using 5 half-sib families (51 affected and 277 nonaffected horses in total), and a genome-wide association study (GWAS) using microsatellites (144 affected and 144 nonaffected horses) to map candidate regions for tying-up syndrome in Japanese Thoroughbreds. The linkage analysis identified one strong L-score (82.45) between the loci UCDEQ411 and COR058 (24.9-27.9 Mb) on ECA12. The GWAS identified two suggestive genomic regions on ECA12 (24.9-27.8 Mb) and ECA20 (29.3-33.5 Mb). Based on both results, the genomic region between UCDEQ411 and TKY499 (24.9-27.8 Mb) on ECA12 was the most significant and was considered as a candidate region for tying-up syndrome in Japanese Thoroughbreds.  相似文献   

18.
Canine hip dysplasia (CHD) is a common hereditary developmental disease of the coxofemoral joints. CHD is characterized by subluxation of the femoral head and deformation of the acetabulum leading to a painful osteoarthrosis. Analyses of mode of inheritance have shown the involvement of a major gene in expression of CHD in German Shepherd dogs. Thus, a whole genome scan for quantitative trait loci (QTL) was performed in German Shepherd dogs. For this purpose 11 paternal half-sib families, including a total of 459 purebred German Shepherd dogs with sires, dams, and offspring, were genotyped for 261 microsatellites. These markers were equidistantly distributed over all 38 autosomes and the X chromosome with an average marker distance of 11.7 cM. The mean observed heterozygosity of the marker set was 50%. The CHD status for the dogs was scored according to the official rules of the Fédération Cynologique Internationale. At the genome-wide level of significance at p < 0.05, QTL for CHD were located on nine different canine chromosomes: 1, 3, 4, 8, 9, 16, 19, 26, and 33. The minimal QTL regions containing the CHD genes spanned on average 5 Mb with a range between 1 and 8.2 Mb. Chromosome-wide level of significance at p < 0.05 was found for QTL on 19 chromosomes. Further analyses can now be performed to refine these map positions of QTL already identified in German Shepherd dogs. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

19.
Equine recurrent uveitis (ERU) is a common eye disease affecting up to 3–15% of the horse population. A genome-wide association study (GWAS) using the Illumina equine SNP50 bead chip was performed to identify loci conferring risk to ERU. The sample included a total of 144 German warmblood horses. A GWAS showed a significant single nucleotide polymorphism (SNP) on horse chromosome (ECA) 20 at 49.3 Mb, with IL-17A and IL-17F being the closest genes. This locus explained a fraction of 23% of the phenotypic variance for ERU. A GWAS taking into account the severity of ERU, revealed a SNP on ECA18 nearby to the crystalline gene cluster CRYGA-CRYGF. For both genomic regions on ECA18 and 20, significantly associated haplotypes containing the genome-wide significant SNPs could be demonstrated. In conclusion, our results are indicative for a genetic component regulating the possible critical role of IL-17A and IL-17F in the pathogenesis of ERU. The associated SNP on ECA18 may be indicative for cataract formation in the course of ERU.  相似文献   

20.
Horses lose potential opportunities because of health problems. Available breeding strategies are not effective enough, probably also because of the different definition used and its genetic usefulness. The aim of the study was to compare the genetic background estimated by the genome-wide association study (GWAS) for osteochondrosis using two different scaling osteochondrosis (OC)/healthy and osteochondrosis dissecans (OCD)/healthy systems for evaluating the disease status of investigated fetlock joints. Two hundred one Warmblood horses trained for performance tests (87 stallions and 114 mares) were phenotyped and genotyped. Four fetlock x-ray images per horse were collected using the RTG Girth HF 80 and Vet Scan ray 3600. The DNA of each horse was genotyped using the BeadChip 70K. To identify SNPs that significantly affect the probability of osteochondrosis, two different methods were applied: the Cochran-Armitage test based on an additive mode of inheritance and logistic regression. The genetic background for osteochondrosis, expressed in the number of SNPs found with significant associations with osteochondrosis, was higher by evaluation in the scale of OCD/healthy horses (16 SNPs on several chromosomes mainly on the ECA1 and ECA10) than OC/healthy (2 SNPs on the ECA15 and one SNP on the ECA10). Detailed definition of osteochondrosis is needed in breeding and in veterinary practice. The genetic background for osteochondrosis and osteochondrosis dissecans seems not the same. Suggestive SNPs could be the candidate markers for osteochondrosis but should be checked on a larger population before usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号