首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Action of pig pancreatic phospholipase A2 on the ternary codispersions of diacylphosphatidylcholine, 1-acyllysophosphatidylcholine and fatty acids is examined. The binding and kinetic constants are found to be the same under a variety of conditions. These parameters and the catalytic turnover number change with the phase-transition temperature of the ternary codispersions, and optimal binding, kinetic and catalytic constants are seen in the phase-transition range where an equilibrium exists between laterally separated phases. The effect of changing the structure of any of the three components is also via a change in the phase-transition temperature of their ternary codispersions. These observations suggest that the binding of pig pancreatic phospholipase A2 to the defect sites on the substrate interface determines the substrate concentration dependence of the initial rate of hydrolysis, and the catalytic turnover by the bound enzyme also depends upon the phase state of the bilayer. An additive-induced stabilization of the defects in the substrate bilayer is postulated to account for the enhanced binding of the enzyme to the bilayer.  相似文献   

2.
Binding of pig pancreatic phospholipase A2 to ternary codispersions of diacylphosphatidylcholine/lysophosphatidylcholine/fatty acid (100:22:22, mole ratio) is monitored by the increase in intrinsic fluorescence intensity of the single tryptophan residue. The fluorescence is quenched by the brominated fatty acid components in the ternary codispersions. The quenching efficiency is in the order: 11,12-dibromo- greater than 9,10-dibromo- greater than 6,7-dibromo- greater than 2-bromo fatty acid. The quenching efficiency of the 9,10-brominated derivatives of the three components in the ternary codispersions is in the order diacylphosphatidylcholine greater than fatty acid greater than lysophosphatidylcholine. Two isomers of diacylphosphatidylcholine with 9,10-dibromo substituents on chain 1 or 2 are equally efficient quenchers. While succinimide also quenches the fluorescence of the free and the membrane bound enzyme, the tryptophan residue in both systems is not accessible to 1-methylnicotinamide. These results are rationalized by a hypothesis that the acyl chains of the substrate interacts with the tryptophan residue of pig pancreatic phospholipase A2, which is readily accessible to water soluble neutral quenchers both in the free and the bound state.  相似文献   

3.
M K Jain  B Z Yu  J Rogers  G N Ranadive  O G Berg 《Biochemistry》1991,30(29):7306-7317
Interpretation of the kinetics of interfacial catalysis in the scooting mode as developed in the first paper of this series [Berg et al. (1991) Biochemistry 30 (first paper of six in this issue)], was based on the binding equilibrium for a ligand to the catalytic site of phospholipase A2. In this paper, we describe direct methods to determine the value of the Michaelis-Menten constant (KMS) for the substrate, as well as the equilibrium dissociation constants for ligands (KL) such as inhibitors (KI), products (KP), calcium (KCa), and substrate analogues (KS) bound to the catalytic site of phospholipase A2 at the interface. The KL values were obtained by monitoring the susceptibility to alkylation of His-48 at the catalytic site of pig pancreatic PLA2 bound to micellar dispersions of the neutral diluent 2-hexadecyl-sn-glycero-3-phosphocholine. The binding of the enzyme to dispersions of this amphiphile alone had little effect on the inactivation rate. The half-time for inactivation of the enzyme bound to micelles of the neutral diluent depended not only on the nature of the alkylating agent but also on the structure and the mole fraction of other ligands at the interface. The KL values for ligands obtained from the protection studies were in excellent accord with those obtained by monitoring the activation or inhibition of hydrolysis of vesicles of 1,2-dimyristoyl-sn-glycerophosphomethanol. Since only calcium, competitive inhibitors, and substrate analogues protected phospholipase A2 from alkylation, this protocol offered an unequivocal method to discern active-site-directed inhibitors from nonspecific inhibitors of PLA2, such as local anesthetics, phenothiazines, mepacrine, peptides related to lipocortin, 7,7-dimethyleicosadienoic acid, quinacrine, and aristolochic acid, all of which did not have any effect on the kinetics of alkylation nor did they inhibit the catalysis in the scooting mode.  相似文献   

4.
Action of pig pancreatic phospholipase A2 on vesicles and micelles of homologous anionic phospholipids is examined in the absence of additives. As shown elsewhere (Jain et al. (1986) Biochim. Biophys. Acta 860, 435-447), hydrolysis of anionic vesicles occurs by interfacial catalysis in the scooting mode, i.e., the catalytic turnover is fast relative to the off-rate of the enzyme from the interface. When the rate of intervesicle exchange of the enzyme is negligibly slow, it hydrolyses only the substrate molecules in the outer monolayer of the vesicle to which it is bound. Interfacial catalysis in the scooting mode with a high processivity occurs on vesicles of anionic phospholipids, and under these conditions the dynamics and order of the substrate in the interface influences the catalytic turnover only moderately, i.e., about 2- to 10-fold. Similarly, anomalous kinetic effects of the thermotropic gel-fluid phase transition or of a change in the general disorder of the bilayer organization (fluidity) has a minor effect on the kinetics of hydrolysis in the scooting mode. Similarly, higher unsaturation and shorter acyl chains in the substrate modestly increase the rate of catalytic turnover by the low-calcium form of the enzyme without noticeably influencing the affinity of the enzyme for the interface. On the other hand, perturbation of the charge distribution in the substrate interface can shift the proportion of the bound enzyme by several orders of magnitude. For example, the membrane perturbing amphiphiles (e.g., mepacrine, indomethacin, compound 48/80, aristolochic acid, local anesthetics, and the products of hydrolysis) do not influence the catalytic turnover of the bound enzyme but the proportion of the bound enzyme. Short-chain anionic phospholipids are readily hydrolyzed by phospholipase A2. Now no anomalous increase in the rate of hydrolysis is observed at the critical micelle as is the case with the zwitterionic analogs. This is because with anionic (but not with zwitterionic) substrates the enzyme forms an aggregated complex below the cmc of the monomer. The stability of these micellar complexes does not appear to change noticeably with the acyl chain length of the monomers. These observations show that the factors regulating the quality of interface substantially influence the binding of the enzyme, but not the catalytic turnover in the interface.  相似文献   

5.
Some homologous calixarenes or polyoxyethylene ethers that are known to suppress or enhance experimental tuberculous infection (depending on their polyoxyethylene chain lengths) were examined for their effects on phospholipid bilayers. The effect of these solutes is seen at 0.5-50p.p.m., and their effect depends upon their structure as well as that of the phospholipid substrate. The antituberculous compound HOC-12.5 (Macrocyclon) inhibits susceptibility to pig pancreatic phospholipase A2 action and to aggregation/fusion of the ternary co-dispersions of dimyristoyl phosphatidylcholine + 1-palmitoyl lysophosphatidylcholine + palmitic acid (50:11:11 molar proportions). In contrast, the protuberculous compound HOC-60 stimulates these effects. Differential scanning calorimetry suggests that these effects are probably due to modulation of the phase equilibrium in substrate bilayers by these polyethers.  相似文献   

6.
Binding of phospholipase A2 from porcine pancreas and from Naja melanoleuca venom to vesicles of 1,2-di(tetradecyl)-rac-glycero-3-phosphocholine (diether-PC14) is studied in the presence and absence of 1-tetradecanoyl-sn-glycero-3-phosphocholine and myristic acid. The bound enzyme coelutes with the vesicles during gel filtration through a nonequilibrated Sephadex G-100 column, modifies the phase transition behavior of bilayers, and exhibits an increase in fluorescence intensity accompanied by a blue shift. Using these criteria it is demonstrated that the snake-venom enzyme binds to bilayers of the diether-PC14 alone. In contrast, the porcine enzyme binds only to ternary codispersions of dialkyl (or diacyl) phosphatidylcholine, lysophosphatidylcholine and fatty acid. Binding of the pig-pancreatic enzyme to vesicles of the diether-PC14 could not be detected even after long incubation (up to 24 h) below, at, or above the phase-transition temperature, whereas the binding in the presence of products is almost instantaneous and observed over a wide temperature range. Thus incorporation of the products in substrate dispersions increases the binding affinity rather than increase the rate of binding. The results are consistent with the hypothesis that the pancreatic enzyme binds to defect sites at the phase boundaries in substrate bilayers induced by the products. The spectroscopically obtained hyperbolic binding curves can be adequately described by a single equilibrium by assuming that the enzyme interacts with discrete sites. The binding experiments are supported by kinetic studies.  相似文献   

7.
J Rogers  B Z Yu  M K Jain 《Biochemistry》1992,31(26):6056-6062
The effect of four specific competitive inhibitors on the kinetics of hydrolysis of short-chain diacyl-sn-glycero-3-phosphocholines below their critical micelle concentrations was examined. The kinetics of hydrolysis of short-chain substrates dispersed as solitary monomers were generally consistent with the classical Michaelis-Menten formalism; i.e., hydrolysis began without any latency period, the steady-state rate was observed at higher substrate concentrations, the steady-state initial rate showed a linear dependence on the enzyme concentration, and the hyperbolic dependence of the initial rate on the substrate concentration could be described in terms of KM and Vmax parameters. The competitive nature of the inhibitors used in this study has been established by a variety of techniques, and the equilibrium dissociation constants for the inhibitors bound to the enzyme were measured by the protection method [Jain et al. (1991) Biochemistry 30, 7306-7317]. The kinetics of hydrolysis in the presence of competitive inhibitors could be described by a single dissociation constant. However, the value of the dissociation constant obtained under the kinetic conditions was comparable to that obtained by the protection method for the inhibitor-enzyme complex bound to a neutral diluent, rather than to the value of the dissociation constant obtained with solitary monomeric inhibitors and the enzyme in the aqueous phase. Spectroscopic methods showed that the effectively lower dissociation constant of an inhibitor bound to PLA2 at the interface is due to the stabilization of the enzyme-inhibitor complex by interaction with other amphiphiles present in the reaction mixture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Beef liver dihydropyrimidine amidohydrolase has been purified to homogeneity using both an electrophoretic and a hydrophobic chromatographic method. The enzyme is a tetramer with a molecular weight of 226,000 g mol-1, a subunit molecular weight of 56,500 g mol-1, and contains 4 mol of tightly bound (Ks greater than or equal to 1.33 X 10(9) M-1) Zn2+ per mole of active enzyme. The enzyme appears to be a true Zn2+ metalloenzyme because there exists a direct proportionality between enrichment of Zn2+ and active enzyme during purification, there is an almost quantitative relationship between the loss of both enzyme activity and Zn2+ during 8-hydroxyquinoline-5-sulfonic acid treatment to form apoenzyme, Zn2+ and Co2+ reactivate dipicolinic acid-inhibited enzyme, and saturating concentrations of a substrate, dihydrothymine, protect against 8-hydroxyquinoline-5-sulfonic acid inhibition. EDTA does not inhibit the enzyme; however, 8-hydroxyquinoline-5-sulfonic acid, o-phenanthroline, and 2,6-dipicolinic acid cause a time-dependent loss in activity which follows pseudo-first-order kinetics. Analysis of the resulting kinetic data for these three chelators indicates that the reaction pathway involves the formation of an enzyme-Zn2+-chelator ternary complex which then dissociates to form apoenzyme and a Zn2+-chelator complex. Like other Zn2+ metalloenzymes, the enzyme is inhibited by a number of substituted sulfonamides. In the case of p-nitrobenzenesulfonamide, this inhibition is competitive in nature. Using the purified enzyme, kinetic constants were determined for a variety of dihydropyrimidines, ureidocarboxylic acids, and hydantoin substrates. Normal hyperbolic kinetics were observed for the hydrolysis of the cyclic compounds, but the cyclization of the ureidoacids showed biphasic kinetics and different values of Km can be estimated at either high or low concentrations of these substrates.  相似文献   

9.
This paper deals with the search for specific inhibitors or activators of the mitochondrial phospholipase A2. Convincing evidence for the existence of proteins in the mitochondrial or cytosolic fraction that function as specific regulators of this enzyme was not obtained. The enzymatic activity appeared to be inhibited at low substrate concentrations by lipocortin isolated from human monocytes. However, at higher substrate concentrations, the inhibition disappeared, suggesting either that lipocortin sequestered the phospholipid substrate or that the putative inactive complex of enzyme and lipocortin dissociated in the presence of excess phospholipids. The hydrolysis of the neutral phospholipid phosphatidylethanolamine was stimulated by the presence of cardiolipin and phosphatidylglycerol. It is unlikely that this is caused merely by the negative charge of these phospholipids, since other negatively charged phospholipids did not show this effect. Using a phospholipid extract from mitochondria as substrate, the enzymatic activity as a function of the Ca2+ concentration was determined. Only one enzyme activity plateau was observed. The calculated KCa2+ value of 0.05 mM suggests that the mitochondrial phospholipase A2 could be regulated strictly by the modulation of the free Ca2+ concentration in vivo. The two activity plateaus observed previously upon variation of the Ca2+ concentration using phosphatidylethanolamine as substrate could be explained by a Ca2+-induced transition of the phospholipid structure.  相似文献   

10.
The reaction progress curve for the action of pig-pancreatic phospholipase A2 on dimyristoylphosphatidylcholine vesicles is characterized under a variety of conditions. The factors that regulate the rate of hydrolysis during the presteady-state phase determine the latency period. The results demonstrate that the accelerated hydrolysis following the latency phase of the reaction progress curve is due to the product-assisted binding of the enzyme to the substrate bilayer by chaning the number of bindings sites and therefore the binding equilibrium. A critical mole fraction of products appears to be formed in the substrate bilayers before the steady-state phase of hydrolysis begins. The latency phase shows a minimum at the phase-transition temperature of the substrate vesicles; however, we did not observe a significant binding of the enzyme to pure substrate bilayers even at the phase-transition temperature. The rate of binding of the enzyme is found to be fast and the rate of desorption of the bound enzyme is very slow compared to the latency phase. The rate of redistribution of products between substrate bilayers is rather slow. These observations demonstrate that during the latency phase of the action of phospholipase A2, a critical mole fraction of products is formed in the substrate bilayer.  相似文献   

11.
F Ghomashchi  T O'Hare  D Clary  M H Gelb 《Biochemistry》1991,30(29):7298-7305
The kinetics of hydrolysis of phospholipid vesicles by phospholipase A2 (PLA2) in the scooting mode can be described by the Michaelis-Menten formalism for the action of the enzyme in the interface (E*). E* + S in equilibrium E*S in equilibrium E*P in equilibrium E* + Products The values of the interfacial rate constants cannot be obtained by classical methods because the concentration of the substrate within the lipid bilayer is not easily manipulated. In the present study, carbonyl-carbon heavy atom isotope effects for the hydrolysis of phospholipids have been measured in both vesicles and in mixed micelles in which the phospholipid was present in the nonionic detergent Triton X-100. A large [14C]carbonyl carbon isotope effect of 1.12 +/- 0.02 was measured for the cobra venom PLA2-catalyzed hydrolysis of dipalmitoylphosphatidylcholine in Triton X-100. In contrast, no isotope effect (1.01 +/- 0.01) was measured for the action of the porcine pancreatic and cobra venom enzymes on vesicles of dimyristoylphosphatidylmethanol in the scooting mode. In a second experiment, the hydrolysis of vesicles was carried out in oxygen-18 enriched water. Analysis of the released fatty acid product by mass spectrometry showed that it contained only a single oxygen-18. All of these results were used to estimate both the forward and reverse commitments to catalysis. The lack of doubly labeled fatty acid demonstrated that the product is released from the E*P complex faster than the reverse of the esterolysis step. The small isotope effect in vesicles demonstrated that the E*S complex goes on to products faster than substrate is released from the enzyme. The relevance of these results to an understanding of substrate specificity and inhibition of PLA2 is discussed. In addition, the conditions placed on the values of the rate constants obtained in the present study together with results obtained in the other studies described in this series of papers have led to the evaluation of most of the interfacial rate constants for the hydrolysis of phospholipid vesicles by PLA2.  相似文献   

12.
We investigated the possible mechanism of inhibition of porcine pancreatic phospholipase A2 in vitro by rabbit uteroglobin and by the antiflammin peptides. We optimized the conditions of phospholipase A2 assay using a deoxycholate-phosphatidylcholine mixed micellar substrate and established the activity of these inhibitors under optimized conditions. The results of fluorescence studies and crosslinking experiments indicate that the inhibitors interact with the enzyme in solution and affect the increase in intrinsic fluorescence of phospholipase A2 observed upon interaction with a mixed micellar substrate. In addition, we identified a sequence similarity between the antiflammin peptides, the putative active region of uteroglobin and a region in pancreatic phospholipase A2. This region of phospholipase A2 has been previously identified as being involved in the regulation of dimerization of this enzyme, and is conserved in the pancreatic-type enzymes. Taken together, these observations suggest that uteroglobin and antiflammins interact with porcine pancreatic phospholipase A2 and this may, at least in part, explain the enzyme inhibitory effect of these molecules observed in vitro. One possible mechanism of this effect may be an interference with the dimerization process of phospholipase A2 which is associated with interfacial activation.  相似文献   

13.
Treatment of red cell membranes with pure phospholipase C inactivates (Na+ + K+)-ATPase activity and Na+-dependent phosphorylation but increases K+-dependent phosphatase activity. When phospholipase A2 replaces phospholipase C, all activities are lost. Activation of K+-dependent phosphatase by treatment with phospholipase C is caused by an increase in the maximum rate of hydrolysis of p-nitrophenylphosphate and in the maximum activating effect of K+, the apparent affinities for substrate and cofactors being little affected. After phospholipase C treatment K+-dependent phosphatase is no longer sensitive to ouabain but becomes more sensitive to N-ethylmaleimide. In treated membranes Na+ partially replaces K+ as an activator of the phosphatase. Although ATP still inhibits phosphatase activity, neither ATP, nor ATP+Na+ are able to modify the apparent affinity for K+ of K+-dependent phosphatase in these membranes.  相似文献   

14.
The effect of anions and deuterated water on the kinetics of action of pig pancreatic phospholipase A2 is examined to elaborate the role of ionic interactions in binding of the enzyme to the substrate interface. Anions and deuterated water have no significant effect on the hydrolysis of monomeric substrates. Hydrolysis of vesicles of DMPMe (ester) is completely inhibited in deuterated water. The shape of the reaction progress curve is altered in the presence of anions. The nature and magnitude of the effect of anions depends upon the nature of the substrate as well as of the anion. Substantial effects of anions on the reaction progress curve are observed even at concentrations below 0.1 M and the sequence of effectiveness for DMPMe vesicles is sulfate greater than chloride greater than thiocyanate. Apparently, anions in the aqueous phase bind to the enzyme, and thus compete with the anionic interface for binding to the enzyme. Binding of the enzyme to anionic groups on the interface results in activation and increased accessibility of the catalytic site possibly via hydrogen bonding network involving water molecule. In order to elaborate the role of the N-terminus region in interfacial anchoring, the action of several semisynthetic pancreatic phospholipase A2s is examined on vesicles of anionic and zwitterionic phospholipids. The first-order rate constant for the hydrolysis of DMPMe in the scooting mode by the various semisynthetic enzymes is in a narrow range: 0.7 +/- 0.15 per min for phospholipase A2 derived from pig pancreas and 0.8 +/- 0.4 per min for the enzymes derived from bovine pancreas. In all cases a maximum of about 4300 substrate molecules are hydrolyzed by each phospholipase A2 molecule. If anions are added at the end of the first-order reaction progress curve, a pseudo-zero-order reaction progress curve is observed due to an increased intervesicle exchange of the bound enzyme. These rates are found to be considerably different for different enzymes in which one or more amino acids in the N-terminus region have been substituted. Steady-state and fluorescence life-time data for these enzymes in water, 2H2O and in the presence of lipids is also reported. The kinetic and binding results are interpreted to suggest that the N-terminus region of phospholipase A2 along with some other cationic residues are involved in anchoring of phospholipase A2 to the interface, and the catalytically active enzyme in the interface is monomeric.  相似文献   

15.
Aghajari N  Roth M  Haser R 《Biochemistry》2002,41(13):4273-4280
The psychrophilic Pseudoalteromonas haloplanctis alpha-amylase is shown to form ternary complexes with two alpha-amylase inhibitors present in the active site region, namely, a molecule of Tris and a trisaccharide inhibitor or heptasaccharide inhibitor, respectively. The crystal structures of these complexes have been determined by X-ray crystallography to 1.80 and 1.74 A resolution, respectively. In both cases, the prebound inhibitor Tris is expelled from the active site by the incoming oligosaccharide inhibitor substrate analogue, but stays linked to it, forming well-defined ternary complexes with the enzyme. These results illustrate competition in the crystalline state between two inhibitors, an oligosaccharide substrate analogue and a Tris molecule, bound at the same time in the active site region. Taken together, these structures show that the enzyme performs transglycosylation in the complex with the pseudotetrasaccharide acarbose (confirmed by a mutant structure), leading to a well-defined heptasaccharide, considered as a more potent inhibitor. Furthermore, the substrate-induced ordering of water molecules within a channel highlights a possible pathway used for hydrolysis of starch and related poly- and oligosaccharides.  相似文献   

16.
In the intravesicle scooting mode of interfacial catalysis, the interfacial complex E*S is formed by the interaction of the membrane bound phospholipase A2 (E*) with the substrate monomer (S) in the interface. In the presence of nonhydrolyzable substrate analogs (I) the kinetics of interfacial catalysis is modified. If phospholipase A2 is added to a mixture of the vesicles of L-DMPMe ester and of DTPMe ether or D-DMPMe ester, the extent of hydrolysis, A, decreases and the interfacial scooting rate constant, ki, remains unchanged. On the other hand, when the enzyme is added to the vesicles prepared from premixed L-DMPMe ester with D-DMPMe ester or L-DTPMe ether, ki decreases but A remains constant. Qualitatively, these results are in excellent accord with the Scheme I for interfacial catalysis. However, a quantitative departure has been noted, which suggests that the interfacial dissociation constant for E*S is larger than that for E*I. These results are interpreted to suggest that the catalytic rate constant for decomposition of E*S to E* + P is larger than the rate constant for decomposition of E*S to E* + S. Broader implications of the scooting mode of interfacial catalysis are discussed.  相似文献   

17.
The kinetics of the Ca2+-dependent, alkaline pH optimum, membrane-bound phospholipase A2 from the P388D1 macrophage-like cell line were studied using various phosphatidylcholine (PC) and phosphatidylethanolamine (PE) substrates. This enzyme exhibits "surface dilution kinetics" toward PC in Triton X-100 mixed micelles, and the "dual phospholipid model" was found to adequately describe its kinetic behavior. With substrate in the form of sonicated vesicles, the dual phospholipid model should give rise to Michaelis-Menten type kinetics. However, the hydrolysis of dipalmitoyl-PC, 1-palmitoyl-2-oleoyl-PC, and 1-stearoyl-2-arachidonoyl-PC vesicles exhibited two distinct activities. Below 10 microM, the data appeared to follow Michaelis-Menten behavior, while at higher concentrations, the data could best be fit to a Hill equation with a Hill coefficient of 2. These PCs had Vmax values for the low substrate concentration range of 0.2-0.6 nmol min-1 mg-1 and Km values of 1-2 microM. At the high substrate concentration range, the Vmax values were between 5 and 7 nmol min-1 mg-1. PC containing unsaturated fatty acids had an apparent Km, determined from the Hill equation, of about 15 microM, while the apparent Km of dipalmitoyl-PC was 0.6 microM. When 70% glycerol was included in the assays, a single Michaelis-Menten curve was obtained for both dipalmitoyl-PC and 1-stearoyl,2-arachidonoyl-PC. Possible explanations for these kinetic results include reconstitution of the membrane-bound phospholipase A2 in the phospholipid vesicle or the enzyme has tow distinct phospholipid binding function. The kinetics for both dipalmitoyl-PC and dipalmitoyl-PE hydrolysis in vesicles was very similar, indicating that the enzyme does not greatly prefer one of these head groups over the other. The enzyme also showed no preference for arachidonoyl containing phospholipid. Enzymatic activity toward PC containing saturated fatty acids was linear to about 15% hydrolysis while the hydrolysis of PC containing unsaturated fatty acids was linear to only about 5%. This loss of linearity was due to inhibition by released unsaturated fatty acids. Arachidonic acid was found to be a competitive inhibitor of dipalmitoyl PC hydrolysis with a K1 of 5 microM. This tight binding suggests a possible in vivo regulatory role for arachidonic acid. Three compounds of the arachidonic acid cascade, prostaglandin F2 alpha, 6-keto-prostaglandin F1 alpha, and thromboxane B2, showed no inhibition of enzymatic activity.  相似文献   

18.
Reaction progress curves for the hydrolysis of dimyristoylphosphatidylcholine by pig pancreatic phospholipase A2 exhibits a latency phase. Addition of 1-palmitoyllysophosphatidylcholine to the preformed vesicles reduces the latency phase and enhances the binding of phospholipase A2 to the vesicles. In contrast, the binary codispersions prepared from diacylphospholipids premixed with lysophosphatidylcholine do not exhibit such enhanced susceptibility to the phospholipase. This effect appears to be due to organizational defects created by asymmetrical incorporation of lysophospholipid molecules into the outer monolayer of the vesicles, and the action of phospholipase is not observed when the additive is equilibrated in both the monolayers of the vesicles.  相似文献   

19.
The hydrolysis of small unilamellar vesicles made of dipalmitoylphosphatidylcoline by pancreatic phospholipase A2 has been studied under various conditions of temperature and enzyme and substrate concentration using the following three different experimental protocols. When the enzyme was added to the substrate vesicles after being separately adjusted to the temperature of the experiments hydrolysis occurred instantaneously only in the temperature range where the lipid is known to exist in its gel phase, while above the transition range no hydrolysis occurred. Within the transition range, the time course of hydrolysis was characterized by initial very slow rate of hydrolysis (latency phase) followed by an abrupt increase in the rate after a time tau, which is a complex function of temperature and enzyme to substrate ratio. When an enzyme-substrate mixture was first preincubated below Tm and then temperature jumped to a temperature above or within the transition range, the latency phase was markedly shortened. When the temperature jump was to the transition range, this effect is observed even if Ca2+ is absent in the preincubation mixture. However, instantaneous hydrolysis was observed upon temperature jumping the mixture to a temperature high above Tm only if Ca2+ was present in the preincubation medium. In temperature-scanning experiments, hydrolysis was followed while changing the temperature of the enzyme-substrate mixture continuously. Heating an enzyme-substrate mixture from room temperature resulted in an abrupt onset of hydrolysis when the transition range was approached. These results lead us to conclude that two distinctly different steps precede rapid hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by pancreatic phospholipase A2: a Ca2+-independent binding of the enzyme to the substrate vesicles, which for chemically pure bilayers occurs best in the gel phase. This step is followed by a Ca2+-dependent activation of the initially formed enzyme-substrate complex. The latter step only occurs under conditions where the bilayer possesses packing irregularities and probably involves a reorganization of the enzyme-substrate complex. At least one of these two steps appears to involve enzyme-enzyme interaction.  相似文献   

20.
The interaction of D-xylose isomerase purified from two sources with Mn2+ and D-xylose or the competitive inhibitor xylitol has been examined by nuclear magnetic resonance. A greater paramagnetic effect of enzyme-bound Mn2+ on the alpha anomer of D-xylose than on the beta anomer was observed, providing independent evidence for the specificity of D-xylose isomerase for the alpha anomeric form of D-xylose. The exchange rate of alpha-D-xylose into the ternary complex, determined from the normalized paramagnetic contribution to the transverse relaxation rate (1/fT2p) of the carbon 1 proton of alpha-D-xylose, exceeds Vmax for the enzymatic reaction by 3 orders of magnitude. The amount of xylitol necessary to displace alpha-D-xylose from the substrate-enzyme-Mn2+ complex is consistent with the Km value for alpha-D-xylose and the inhibitor constant Ki for xylitol previously determined by the methods of enzyme kinetics. These results suggest that the NMR experiments observe complexes of D-xylose isomerase which are kinetically and thermodynamically competent to participate in catalysis. From the frequency dependence of the paramagnetic contribution to the longitudinal relaxation rate (1/T1p) of the carbon 1 proton of alpha-D-xylose, the correlation time (tauc) which modulates the dipolar interaction between enzyme-bound Mn2+ and alpha-D-xylose has been determined (5.1 x 1o(-10) s). From these observations a range of calculated distances between enzyme-bound Mn2+ and the carbon 1 proton of alpha-D-xylose (9.1 +/- 0.7 A) has been found. The enzyme-bound Mn2+ has comparable effects on the carbon 1, carbon 2, and carbon 5 protons of alpha-D-xylose, suggesting that these protons of the enzyme-bound substrate are equidistant from the bound Mn2+. A similar distance (9.4 +/- 0.7 A) between the enzyme-bound Mn2+ and the terminal methylene protons of xylitol, an analog of the open chain intermediate in the reaction, has been determined. The results of the present substrate relaxation and previous water relaxation studies suggest that two small ligands such as water molecules or a large portion of the protein intervene between the bound metal ion and the bound substrate in the active ternary complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号