首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Abstract The larval ciliary bands of echinoderm bipinnaria and pluteus larvae and the hemichordate tornaria contain similar multipolar or bipolar nerve cells with unusual apical processes that run across the surface of the band between the bases of its cilia. We report on some distinctive ultrastructural features of these cells. Among these are specialized junctions that occur between the cells' apical processes and adjacent ciliary band cells near the base of each cilium. Such structures are best developed in pluteus larvae. Many nerve cells in the larval spinal cord of amphioxus also have large apical processes that cross the central lumen of the cord. We interpret our observations on these cells in terms of Garstang's hypothesis, which derives the chordate neural tube from a larval ciliary band, and suggest that multipolar cells like those in echinoderm and tornaria bands may be the antecedents of some categories of neurons in the chordate spinal cord.  相似文献   

2.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

3.
The present immunocytochemical study utilizes serotonin and SALMFamide antisera, together with confocal laser scanning microscopy, to provide new information about the development of the nervous system in the sea urchin Psammechinus miliaris (Echinodermata: Echinoidea). Special attention is paid to the extent of the nervous system in later larval stages (6-armed pluteus to metamorphic competency), a characteristic that has not been well described in this and other species of sea urchin. An extensive apical ganglion appears by the 6-armed pluteus stage, forming a complex of 10-20 cells and fibers, including discrete populations of both serotonin-like and SALMF-amide-like immunoreactive cells. At metamorphosis this complex is large, comprising at least 40 cells in distinct arrays. Serotonin-like immunoreactivity is also particularly apparent in the lower lip ganglion of 6- to 8-armed plutei; this ganglion consists of 15-18 cells that are distributed around the mouth. The ciliary nerves that lie beneath the ciliary bands in the larval arms, the esophagus, and a hitherto undescribed network associated with the pylorus all show SALMFamide-like immunoreactivity. The network of cells and fibers in the pyloric area develops later in larval life. It first appears as one cell body and fiber, then increases in size and complexity through the 8-armed pluteus stage to form a complex of cells that encircles the pylorus. SALMFamide-like, but not serotonin-like, immunoreactivity is seen in the vestibule wall, tube feet, and developing radial nerve fibers of the sea urchin adult rudiment as the larva gains metamorphic competency.  相似文献   

4.
5.
6.
7.
An ultrastructural study of the larval integument of the sea urchin, Hemicentrotus pulcherrimus , was conducted with special emphasis on the development of the nervous system in relation to the formation of ciliary bands. In the integument of 4-armed pluteus larvae, cells associated with the ciliary band, which have 200 nm-thick projections at their apices, and cells in the squamous epithelium, which have a cilium and long, fine radiating processes in the apical region, were observed. Both cell types have axons at their basal ends that form nerve bundles beneath the ciliary bands, where the axons make contact with ectodermal effector cells with motile cilia. The cilia and other apical projections of these ectoneural cells run parallel to the surface of the cells, and are under the hyaline layer. The axoneme of the cilium has a typical "9 + 2" microtubular arrangement, but generally has no dynein arms. These ectoneural cells are more frequent on the oral surface than on the antioral surface.  相似文献   

8.
Echinoderm larvae share numerous features of neuroanatomy. However, there are substantial differences in specific aspects of neural structure and ontogeny between the dipleurula-like larvae of asteroids and the pluteus larvae of echinoids. To help identify apomorphic features, we have examined the ontogeny of the dipleurula-like auricularia larva of the sea cucumber, Holothuria atra. Neural precursors arise in the apical ectoderm of gastrulae and appear to originate in bilateral clusters of cells. The cells differentiate without extensive migration, and they align with the developing ciliary bands and begin neurogenesis. Neurites project along the ciliary bands and do not appear to extend beneath either the oral or aboral epidermis. Apical serotonergic cells are associated with the preoral loops of the ciliary bands and do not form a substantial commissure. Paired, tripartite connectives form on either side of the larval mouth that connect the pre-oral, post-oral, and lateral ciliary bands. Holothurian larvae share with hemichordates and bipinnariae a similar organization of the apical organ, suggesting that the more highly structured apical organ of the pluteus is a derived feature. However, the auricularia larva shares with the pluteus larva of echinoids several features of neural ontogeny. Both have a bilateral origin of neural precursors in ectoderm adjacent to presumptive ciliary bands, and the presumptive neurons move only a few cell diameters before undergoing neurogenesis. The development of the holothurian nervous systems suggests that the extensive migration of neural precursors in asteroids is a derived feature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
SUMMARY Modularity is a salient feature of development and crucial to its evolution. This paper extends modularity to include the concept of gene expression territory, as established for sea urchin embryos. Territories provide a mechanism for partitioning of the cells of a rapidly developing embryo into functional units of a feeding larva. Territories exhibit the characteristics of modules. The paper asks if the embryo and the nonfeeding larva of the direct-developing sea urchin Heliocidaris erythrogramma are organized into gene expression territories, and if its territories correspond to the canonical territories of the pluteus. An analysis of cell lineage and gene expression data for H. erythrogramma shows that skeletogenic cell, coelomic, and vegetal plate gene expression territories are conserved, although they arise from cell lineages distinct from those of the pluteus, and the overall morphology of the larva differs from that of a pluteus. The ectoderm, as in indirect developers, is divided into territories. However, the oral ectodermal territory characteristic of the pluteus is absent in H. erythrogramma. Oral ectoderm is restored in hybrids of H. erythrogramma eggs fertilized by Heliocidaris tuberculata sperm. This indicates that embryonic modules evolve by changes in expression of dominant regulatory genes within territories and that entire modules can be eliminated in evolution of embryos.  相似文献   

10.
We examined deuterostome invertebrates, the sea urchin and amphioxus, and an extant primitive vertebrate, the lamprey, for the presence of structures expressing the HNK-1 carbohydrate and serotonin. In sea urchin embryos and larvae, HNK-1 positive cells were localized in the ciliary bands and in their precursor ectoderm. Serotonergic cells were exclusively observed in the apical organs. In juvenile amphioxus, primary sensory neurons in the dorsal nerve cords were HNK-1 immunoreactive. The juvenile amphioxus nerve cords contained anti-serotonin immunoreactive nerve fibers that seem to be the Rohde axons extending from amphioxus interneurons, the Rohde cells. In lamprey embryos, migrating neural crest cells and primary sensory neurons, including Rohon-Beard cells, expressed the HNK-1 carbohydrate. Lamprey larvae (ammocoetes) contained cell aggregates expressing both the HNK-1 carbohydrate and serotonin in the pronephros and in the regions adjacent to the gut epithelium. Some of these cell aggregates were present in the anti-serotonin positive visceral motor nerve net. Motor neurons and Müller fibers were serotonergic in ammocoetes. Comparison of the expression patterns of HNK-1 carbohydrate among sea urchins, amphioxus and lampreys seem to suggest the possible evolutionary origin of the neural crest, that is, ciliary bands in dipleurula-type ancestors evolved into primary sensory neurons in chordate ancestors, as inferred from Garstang's auricularia hypothesis, and the neural crest originated from the primary sensory neurons.  相似文献   

11.
Expression of the arylsulfatase (Ars) gene in sea urchin embryos begins just before hatching and ceases at the pluteus stage. Initiation of the Ars gene expression is inhibited by aphidicolin, which inhibits DNA synthesis without arresting the total RNA synthesis. Based on these finding it is supposed that DNA replication is a prerequisite for initiation of the Ars gene expression in developing sea urchin embryos.  相似文献   

12.
13.
14.
15.
16.
Presence of a Ciliary Patch in Preoral Epithelium of Sea Urchin Plutei   总被引:3,自引:1,他引:2  
Removal of the hyaline layer from sea urchin embryos at the pluteus stage discloses a densely ciliated region in the preoral area of the ectodermal epithelium. In four-armed plutei, this ciliary path is located between the anterolateral arms and in eight-armed plutei it becomes surrounded by preoral and anterolateral arms. The area of the patch and the number of cilia increase with age. This patch is covered by cilia of unusual morphology and orientation. There are more than two cilia per cell which are coiled together several times around a small cone at the apical end of the cell. These coiled cilia run parallel to the surface of the cell but do not extend beyond the hyaline layer. The ciliary axoneme consists of a "9+2" microtubular structure, but no outer or inner dynein arms are observed. Although the cells with coiled cilia are present in a cluster constituting a part of the epithelium, they have axons that project from their basal (inner) ends. The structural characteistics of the ciliary patch suggest that it possesses a sensory function.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号