首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasminogen activator inhibitor-1 (PAI-1) binds to the somatomedin B (SMB) domain of vitronectin. It inhibits the adhesion of U937 cells to vitronectin by competing with the urokinase receptor (uPAR; CD87) on these cells for binding to the same domain. Although the inhibitor also blocks integrin-mediated cell adhesion, the molecular basis of this effect is unclear. In this study, the effect of the inhibitor on the adhesion of a variety of cells (e.g., U937, MCF7, HT-1080, and HeLa) to vitronectin was assessed, and the importance of the SMB domain in these interactions was determined. Although PAI-1 blocked the adhesion of all of these cells to vitronectin-coated wells, it did not block adhesion to a variant of vitronectin which lacked the SMB domain. Interestingly, HT-1080 and U937 cells attached avidly to microtiter wells coated with purified recombinant SMB (which does not contain the RGD sequence), and this adhesion was again blocked by the inhibitor. These results affirm that PAI-1 can inhibit both uPAR- and integrin-mediated cell adhesion, and demonstrate that the SMB domain of vitronectin is required for these effects. They also show that multiple cell types can employ uPAR as an adhesion receptor. The use of purified recombinant SMB should help to further define this novel adhesive pathway, and to delineate its relationship with integrin-mediated adhesive events.  相似文献   

2.
It has been proposed that a finely tuned protease-anti-protease equilibrium must be maintained during processes of cell migration in order to limit extracellular proteolysis to the close proximity of the cell surface, and thereby to prevent excessive extracellular matrix degradation. We have previously shown that urokinase-type plasminogen activator (u-PA) activity is induced in microvascular endothelial cells migrating from the edges of a wounded monolayer in vitro (Pepper et al., J. Cell Biol., 105:2535-2541, 1987). By Northern analysis, we now demonstrate that plasminogen activator inhibitor 1 (PAI-1) mRNA is increased in multiple-wounded monolayers of bovine microvascular (BME) or aortic (BAE) endothelial cells, with a maximal 7- and 9-fold increase 4 h after wounding, respectively. By in situ hybridization, we demonstrate that the increase in PAI-1 mRNA is localized to cells at the edge of a wounded BME or BAE cell monolayer. The increase in PAI-1 mRNA observed in BME cells is independent of cell division and is inhibited by antibodies to basic fibroblast growth factor (bFGF), suggesting that PAI-1 induction in migrating cells is mediated by the autocrine activity of bFGF. Taken together with our previous observations on the induction of u-PA, these results support the hypothesis that the proteolytic balance in the pericellular environment of migrating cells is regulated through the concomitant production of proteases and protease inhibitors.  相似文献   

3.
The binding of urokinase plaminogen activator (uPA) to its cell surface receptor (uPAR; CD87) promotes cell adhesion by increasing the affinity of the receptor for both vitronectin (VN) and integrins. We provide evidence that plasminogen activator inhibitor (PAI)-1 can detach cells by disrupting uPAR-VN and integrin-VN interactions and that it does so by binding to the uPA present in uPA-uPAR-integrin complexes on the cell surface. The detached cells cannot reattach to VN unless their surface integrins are first activated by treatment with MnCl2. Immunoprecipitation and subcellular fractionation experiments reveal that PAI-1 treatment triggers deactivation and disengagement of uPA-uPAR-integrin complexes and their endocytic clearance by the low density lipoprotein receptor-related protein. Transfection experiments demonstrate that efficient cell detachment by PAI-1 requires an excess of matrix-engaged uPA-uPAR-integrin complexes over free engaged integrins and that changes in this ratio alter the efficacy of PAI-1. Together, these results suggest a VN-independent, uPA-uPAR-dependent mechanism by which PAI-1 induces cell detachment. This pathway may represent a general mechanism, since PAI-1 also can detach cells from fibronectin and type-1 collagen. This novel "deadhesive" activity of PAI-1 toward a variety of cells growing on different extracellular matrices may begin to explain why high PAI-1 levels often are associated with a poor prognosis in human metastatic disease.  相似文献   

4.
The serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is associated with the pathophysiology of several diseases, including cancer and cardiovascular disease. The extracellular matrix protein vitronectin increases at sites of vessel injury and is also present in fibrin clots. Integrins present on the cell surface bind to vitronectin and anchor the cell to the extracellular matrix. However, the binding of PAI-1 to vitronectin prevents this interaction, thereby decreasing both cell adhesion and migration. We previously developed PAI-1-specific RNA aptamers that bind to (or in the vicinity of) the vitronectin binding site of PAI-1. These aptamers prevented cancer cells from detaching from vitronectin in the presence of PAI-1, resulting in an increase in cell adhesion. In the current study, we used in vitro assays to investigate the effects that these aptamers have on human aortic smooth muscle cell (HASMC) and human umbilical vein endothelial cell (HUVEC) migration, adhesion, and proliferation. The PAI-1-specific aptamers (SM20 and WT15) increased attachment of HASMCs and HUVECs to vitronectin in the presence of PAI-1 in a dose-dependent manner. Whereas PAI-1 significantly inhibited cell migration through its interaction with vitronectin, both SM20 and WT15 restored cell migration. The PAI-1 vitronectin binding mutant (PAI-1AK) did not facilitate cell detachment or have an effect on cell migration. The effect on cell proliferation was minimal. Additionally, both SM20 and WT15 promoted tube formation on matrigel that was supplemented with vitronectin, thereby reversing the PAI-1's inhibition of tube formation. Collectively, results from this study show that SM20 and WT15 bind to the PAI-1's vitronectin binding site and interfere with its effect on cell migration, adhesion, and tube formation. By promoting smooth muscle and endothelial cell migration, these aptamers can potentially eliminate the adverse effects of elevated PAI-1 levels in the pathogenesis of vascular disease.  相似文献   

5.
Plasminogen activator inhibitor (PAI)-1 is the main inhibitor of the fibrinolytic system and is known to play an essential role in tissue remodeling. Recent evidence indicates that chronic asthma may lead to tissue remodeling such as subepithelial fibrosis and extracellular matrix (ECM) deposition in the airways. However, the role of PAI-1 in asthma is unknown. Recently the mast cell (MC), which plays a major role in asthma, was found as a novel source of PAI-1, and a large number of MCs expressing PAI-1 are infiltrated in the airways of patients with severe asthma. Furthermore, PAI-1-deficient mice show reduced ECM deposition in the airways of a murine model of chronic asthma by inhibiting MMP-9 activity and fibrinolysis. In a human study, the 4G allele frequency was significantly higher in the asthmatic patients than in the control group. In view of the findings that the 4G allele is associated with elevated plasma PAI-1 level, elevated PAI-1 level in the lung may contribute to the development of asthma. In summary, PAI-1 may play an important role in the pathogenesis of asthma and further studies evaluating the mechanisms of PAI-1 action may lead to the development of a novel therapeutic target for the treatment and prevention of asthma.  相似文献   

6.
Urokinase-type (uPA) plasminogen activator is regulated by serine protease inhibitors (serpins), especially plasminogen activator inhibitor-1 (PAI-1). In many cancers, uPA and PAI-1 contribute to the invasive phenotype. We examined the in vitro migration and invasive capabilities of breast, ovarian, endometrial, and cervical cancer cell lines compared to their plasminogen activator system profiles. We then overexpressed active wild-type PAI-1 and an inactive "substrate" P14 form of PAI-1 (T333R) using stable transfection and adenoviral gene delivery. We also upregulated endogenous uPA and PAI-1 in these cells by treatment with transforming growth factor-beta. Some breast and ovarian cancer cell lines with natural expression of uPA, PAI-1, and urokinase receptor showed substantial migration and invasion compared to other cell lines that lack expression of these proteins. However, overexpression of active wild-type PAI-1, but not P14-PAI-1 (T333R), in these cell lines showed reduced migration and invasion. Since vitronectin binding by both forms of PAI-1 is equivalent, these results imply that PAI-1-vitronectin interactions are less critical in altering migration and invasion. Our results show that the in vitro migratory and invasive phenotype in these breast and ovarian cancer cell lines is reduced by active PAI-1 due to its ability to inhibit plasminogen activation.  相似文献   

7.
8.
Plasminogen activator inhibitor-1, adipose tissue and insulin resistance   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Plasminogen activator inhibitor (PAI)-1 is a physiological inhibitor of plasminogen activators (urokinase and tissue types) and vitronectin. It is synthesized by adipose tissue, and its levels in plasma are increased in obesity and reduced with weight loss. Circulating PAI-1 level predicts development of type 2 diabetes, suggesting that it may be causally related to development of obesity. A role for PAI-1 in development of obesity has only partially been established, however. This review summarizes current knowledge, gives context to developments thus far and discusses controversies. RECENT FINDINGS: In addition to its role in atherothrombosis, PAI-1 might be involved in adipose tissue development. PAI-1 is produced by ectopic fat depots under the influence of inducers. Among the most recently described inducers are inflammation, oxidative stress and circadian clock protein. PAI-1 may play several roles in contributing to obesity: through indirect effects on insulin signalling, by influencing adipocyte differentiation and by regulating recruitment of inflammatory cells within adipose tissue. SUMMARY: These recent findings emphasize the involvement of PAI-1 in controlling the biology of adipose tissue; PAI-1 is an attractive new therapeutic target to retard the metabolic complications that accompany obesity.  相似文献   

9.
Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis.   总被引:6,自引:0,他引:6  
Elevated expression of plasminogen activator inhibitor-1 (PAI-1) in tumors is associated with a poor prognosis in many cancers. Reduced tumor growth and angiogenesis have also been reported in mice deficient in PAI-1. These results suggest that PAI-1 may be required for efficient angiogenesis and tumor growth. In the present study, we demonstrate that PAI-1 can both enhance and inhibit the growth of M21 human melanoma tumors in nude mice and that this appears to be due to PAI-1 regulation of angiogenesis. Quantitative analysis of angiogenesis in a Matrigel implant assay indicated that in PAI-1 null mice angiogenesis was reduced approximately 60% compared with wild-type mice, while in mice overexpressing PAI-1, angiogenesis was increased nearly 3-fold. Furthermore, addition of PAI-1 to implants in wild-type mice enhanced angiogenesis up to 3-fold at low concentrations but inhibited angiogenesis nearly completely at high concentrations. Together, these data demonstrate that PAI-1 is a potent regulator of angiogenesis and hence of tumor growth and suggest that understanding the mechanism of this activity may lead to the development of important new therapeutic agents for controlling pathologic angiogenesis.  相似文献   

10.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   

11.
12.
Activated protein C (APC), an anticoagulant serine protease, has been shown to have non-hemostatic functions related to inflammation, cell survival, and cell migration. In this study we investigate the mechanism by which APC promotes angiogenesis and breast cancer invasion using ex vivo and in vitro methods. When proteolytically active, APC promotes cell motility/invasion and tube formation of endothelial cells. Ex vivo aortic ring assays verify the role of APC in promoting angiogenesis, which was determined to be dependent on EGFR and MMP activation. Given the capacity of APC to promote angiogenesis and the importance of this process in cancer pathology, we investigated whether the mechanisms by which APC promotes angiogenesis can also promote motility and invasion in the MDA-MB-231 breast cancer cell line. Our results indicate that, extracellularly, APC engages EPCR, PAR-1, and EGFR in order to increase the invasiveness of MDA-MB-231 cells. APC activation of matrix metalloprotease (MMP) -2 and/or -9 is necessary but not sufficient to increase invasion, and APC does not utilize the endogenous plasminogen activation system to increase invasion. Intracellularly, APC activates ERK, Akt, and NFκB, but not the JNK pathway to promote MDA-MB-231 cell motility. Similar to the hemostatic protease thrombin, APC has the ability to enhance both endothelial cell motility/angiogenesis and breast cancer cell migration.  相似文献   

13.
The antigen content of plasminogen activator inhibitor-1 (PAI-1) in primary breast cancer tissue extracts may be of strong prognostic value: high levels of PAI-1 in tumors predict poor prognosis for patients. The gene encoding PAI-1 is highly polymorphic and an insertion (5G)/deletion (4G) polymorphism in the PAI-1 gene promoter (the 4G/5G polymorphism), may have functional significance in PAI-1 expression. In the present work the distribution of genotypes and frequency of alleles of the 4G/5G polymorphism in subjects with breast cancer were investigated. Tumor tissues were obtained from 100 postmenopausal women with node-negative and node-positive ductal breast carcinoma with uniform tumor size. Blood samples from age matched healthy women served as control. The 4G/5G polymorphism was determined by PCR amplification using the allele specific primers. The distribution of the genotypes of the 4G/5G polymorphism in both control and patients did not differ significantly (P > 0.05) from those predicted by the Hardy-Weinberg distribution. There were no differences in the genotype distributions and allele frequencies between node-positive and node-negative patients. The 4G/5G polymorphism may not be linked with elevated level of PAI-1 observed in breast cancer and therefore may not be associated with appearance and/or progression of breast cancer.  相似文献   

14.
The importance of Thomsen-Friedenreich antigen (T antigen)-galectin-3 interactions in adhesion of human breast carcinoma cells to the endothelium under conditions of flow was studied. Highly metastatic cells (MDA-MB-435) expressing high levels of both galectin-3 and T antigen demonstrated significantly increased adhesion to monolayers of endothelial cells compared with their non-metastatic counterpart (MDA-MB-468) in vitro. Within minutes of adhesion, the highly metastatic cells acquire the ability of enhanced homotypic adhesion, leading to the formation of multicellular aggregates at sites of attachment to endothelial cells in vitro. Treatment of cells with lactulosyl-l-leucine, a synthetic T antigen antagonist that targets galectin-3 by mimicking T antigen, caused a 60-80% inhibition of both homo- and heterotypic adhesion of MDA-MB-435 cells. Confocal microscopy and fluorescence-activated cell sorter analysis revealed redistribution of endothelial galectin-3 to the site of heterotypic intercellular contacts, whereas galectin-3 in MDA-MB-435 cells accumulated at sites of homotypic interaction. MDA-MB-435 cells also exhibited increased adhesion and intravascular retention within the microvessels of transplanted lung allografts in nude mice. T antigen and galectin-3-mediated interactions of metastatic cancer cells with endothelium under conditions of flow are characterized by a unique adhesion mechanism that qualitatively distinguishes their homo- and heterotypic adhesive behavior from other cell types such as leukocytes.  相似文献   

15.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with alpha5beta1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

16.
RRR-alpha-Tocopheryl succinate (vitamin E succinate, VES) is a potent antitumor agent, inducing DNA synthesis arrest, differentiation, and apoptosis. Because little is known about VES-induced differentiation, studies reported here characterize VES effects on the differentiation status of human breast cancer cell lines and investigate possible molecular mechanisms involved. VES-induced differentiation of human MCF-7 and MDA-MB-435 breast cancer cells was characterized by morphological changes, induction of lipid droplets, induction of beta-casein mRNA expression, and down-regulation of Her2/neu protein. In contrast, VES treatment of normal human mammary epithelial cells, MCF-10A cells, and T-47D cells did not induce differentiation. Studies addressing mechanisms showed that neither antibody neutralization of the transforming growth factor-beta signaling pathway nor expression of a dominant-negative mutant of c-Jun N-terminal kinase blocked the ability of VES to induce differentiation; however, treatment of cells with PD 98059, a chemical inhibitor of mitogen-activated protein kinase kinase (MEK1/2), blocked the ability of VES to induce differentiation.  相似文献   

17.
Here we show that extracts of Boswellia serrata gum resins and its constituents, the boswellic acids (BAs), activate the mitogen-activated protein kinases (MAPK) p42(MAPK) and p38 in isolated human polymorphonuclear leukocytes (PMNL). MAPK activation was rapid and transient with maximal activation after 1-2.5 min of exposure and occurred in a dose-dependent manner. The keto-BAs (11-keto-beta-BA and 3-O-acetyl-11-beta-keto-BA) gave substantial kinase activation at 30 microM, whereas other BAs lacking the 11-keto group were less effective. Moreover, 11-keto-BAs induced rapid and prominent mobilization of free Ca(2+) in PMNL. Inhibitor studies revealed that phosphatidylinositol 3-kinase (PI 3-K) is involved in BA-induced MAPK activation, whereas a minor role was apparent for protein kinase C. MAPK activation by 3-O-acetyl-11-beta-keto-BA was partially inhibited when Ca(2+) was removed by chelation. Our results suggest that 11-keto-BAs might function as potent activators of PMNL by stimulation of MAPK and mobilization of intracellular Ca(2+).  相似文献   

18.
19.
Integrin-mediated adhesion to the extracellular matrix plays a fundamental role in tumor metastasis. Salvicine, a novel diterpenoid quinone compound identified as a nonintercalative topoisomerase II poison, possesses a broad range of antitumor and antimetastatic activity. Here, the mechanism underlying the antimetastatic capacity of salvicine was investigated by exploring the effect of salvicine on integrin-mediated cell adhesion. Salvicine inhibited the adhesion of human breast cancer MDA-MB-435 cells to fibronectin and collagen without affecting nonspecific adhesion to poly-l-lysine. The fibronectin-dependent formation of focal adhesions and actin stress fibers was also inhibited by salvicine, leading to a rounded cell morphology. Furthermore, salvicine down-regulated beta(1) integrin ligand affinity, clustering and signaling via dephosphorylation of focal adhesion kinase and paxillin. Conversely, salvicine induced extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. The effect of salvicine on beta(1) integrin function and cell adhesion was reversed by U0126 and SB203580, inhibitors of MAPK/ERK kinase 1/2 and p38 MAPK, respectively. Salvicine also induced the production of reactive oxygen species (ROS) that was reversed by ROS scavenger N-acetyl-l-cysteine. N-acetyl-l-cysteine additionally reversed the salvicine-induced activation of ERK and p38 MAPK, thereby maintaining functional beta(1) integrin activity and restoring cell adhesion and spreading. Together, this study reveals that salvicine activates ERK and p38 MAPK by triggering the generation of ROS, which in turn inhibits beta(1) integrin ligand affinity. These findings contribute to a better understanding of the antimetastatic activity of salvicine and shed new light on the complex roles of ROS and downstream signaling molecules, particularly p38 MAPK, in the regulation of integrin function and cell adhesion.  相似文献   

20.
Slender bundled actin containing plasma membrane protrusions, called filopodia, are important for many essential cellular processes like cell adhesion, migration, angiogenesis and the formation of cell-cell contacts. In migrating cells, filopodia are the pioneers at the leading edge which probe the environment for cues. Integrins are cell surface adhesion receptors critically implicated in cell migration and they are transported actively to filopodia tips by an unconventional myosin, myosin-X. Integrin mediated adhesion stabilizes filopodia and promotes cell migration even though integrins are not essential for filopodia initiation. Myosin-X binds also PtdIns(3,4,5)P3 and this regulates its activation and localization to filopodia. Filopodia stimulate cell migration in many cell types and increased filopodia density has been described in cancer. Furthermore, several proteins implicated in filopodia formation, like fascin, are also relevant for cancer progression. To investigate this further, we performed a meta-analysis of the expression profiles of 10 filopodia-linked genes in human breast cancer. These data implicated that several different filopodia-inducing genes may contribute in a collective manner to cancer progression and the high metastasis rates associated with basal-type breast carcinomas.Key words: filopodia, integrins, migration, cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号