首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary In vitro pollen germination of cultivated tomato, Lycopersicon esculentum Mill., is inhibited by an ambient temperature of 5°C, more so than pollen from a Peruvian ecotype of Lycopersicon hirsutum Humb. & Bonpl. originating from an altitude of 3200 m. The frequency of L. hirsutum gametes contributing to hybrid zygote formation is more than doubled when controlled fertilizations with pollen mixtures of the two species occurs at 12/6°C as compared to crosses with the same mixtures at 24/19°C. The results suggest that differential selection at the gametophytic level occurs in response to low temperature regimes. To our knowledge this is the first time in higher plants that alteration of an environmental factor has been demonstrated to change selection values of male gametophytes in a fashion predicted by the ecology of the parental sporophytes.  相似文献   

2.
Summary The competitive ability of the pollen of wild tomato species (Solanum pennellii, Lycopersicum hirsutum and L. minutum) and a cultivar of tomato to affect fertilization at low temperature was investigated. Pollen grains of wild species were mixed with those of the cultivar and pollinated onto the stigma of the cultivar. The number of seedlings resembling the wild species, excluding L. minutum, were significantly higher when the plants were maintained at a low temperature (8°–12° C) than when they were maintained at a normal temperature (22°–28° C). This indicates that the pollen of S. pennellii and L. hirsutum wild species can compete better with pollen of the cultivar at a low temperature, while there was no change in the competitive ability of L. minutum pollen under these conditions.  相似文献   

3.
Summary Confined design combined with use of tolerance ratio was used to compare pollen germination capacity at low and high temperature in Andean and European potato material. Four clones of Solanum tuberosum from the European gene pool were compared with four Andean potato clones derived from the breeding program for frost resistance at the International Potato Center (CIP), Lima, Peru. For each clone, the same pollen lot was used throughout each replication. Pollen were germinated at 9 °C and 21 °C. Fortification of media with potato starch and 14 min preincubation at 25 °C were used as variables. The Andean material maintained its germination capacity better than the European material when temperature was decreased. It was possible significantly to distinguish potato clones with low temperature requirement for pollen germination if incubation proceeded germination at 21 °C, but not at 9 °C. Fortification with starch had no significant effect.  相似文献   

4.
Erwin Heberle-Bors 《Planta》1982,156(5):396-401
Pollen sterility, sex balance, and floral induction of the pollen donor plants were tested for a possible relation to embryogenesis from in vitro cultured tobacco pollen (Nicotiana tabacum L. var. Badischer Burley). The pollen grains destined to become embryos in culture (P-grains) were sterile for the donor plants as judged by their staining reaction with acetocarmine and fluorescin-diacetate, and by an in vitro germination test. They were produced in high frequency in flowers which exhibited a shift in sex balance towards femaleness. Sex balance could be measured by the relative length of pistil to stamens. High P-grain frequency, high pollen sterility, and a shift in sex balance towards femaleness could be induced by raising the donor plants under short days and/or low temperature (18–15° C) as compared to long days at 24° C. Short days and/or low temperature also reinforced floral induction, revealing that the tobacco variety Badischer Burley is a quantitative short day and low temperature plant and that the variety follows the rule that conditions of strong floral induction shift sex balance towards femaleness. At 12° C and short days, contabescent flowers were formed with completely sterile anthers containing a few and mostly collapsed P-grains. Based on these results, it is now possible to predict conditions by which haploids via pollen embryogenesis might be produced in high frequency from low-yielding and recalcitrant species.Abbreviations DPF dead pollen grain frequency - LD24 long days at 24° C - PD pollen dimorphism - P:S ratio of pistil to stamen length - SD15 short days at 15° C  相似文献   

5.
Summary Responses of pollen grains of Nicotiana tabacum to high humidity (95% RH, 4 h) and temperature (38°/45° C, 4 h) stresses were investigated. Pollen grains were subjected to only RH or only temperature, or to both of these stresses. Their viability was assessed on the basis of the fluorochromatic reaction (FCR) test, and vigour was assessed on the basis of the time taken for in vitro germination as well as on the emergence of pollen tubes through the cut end of semi-vivo implanted styles. None of the stress conditions affected pollen viability and high RH or high temperature stress did not individually affect pollen vigour. However, pollen vigour was markedly affected when both the stresses were given together. Pollen grains subjected to high RH at 38° C took a longer time to germinate in vitro and the pollen tubes emerged later from the cut end of the semi-vivo styles; division of the generative cell was also delayed. Pollen grains subjected to high RH at 45° C failed to germinate in vitro, but did germinate on the stigma. Many pollen tubes subjected to this treatment showed abnormalities, and the growth of pollen tubes in the pistil was much slower than that observed in other treatments. Pollen samples subjected to all of the stress conditions were able to induce fruit and seed set. The implications of these results on the relationship between the FCR test and viability, and between viability and vigour, especially in stressed pollen, are discussed.  相似文献   

6.
Summary Microgametophytic selection was investigated using two ecologically diverse autotetraploid clones of alfalfa. Several selection pressures (drying, aging, freezing, and high and low temperatures) were applied to microgametophytes at three stages of the life cycle, 1) during microsporogenesis, 2) post-anthesis, and 3) pollen tube growth. Pollen aging produced a progeny population with a greater mean plant size and a lower coefficient of variation than the control progeny. High temperature (29.5 °C) applied both during microsporogenesis and pollen tube growth resulted in progeny populations which were significantly taller and, in one case, had a larger leaf number than the control populations. In contrast, air dried pollen resulted in a progeny population which had significantly smaller character means and larger coefficients of variation than the control population. Also, low temperature (15 °C) during pollen tube growth yielded progeny with reduced branch number and a larger coefficient of variation than the control progeny. In cases where progeny derived from selected microgametophytes were found to differ from the control offspring, corresponding shifts in the reciprocal cross were not observed. For the temperature stress treatments, the lack of reciprocal differences may be related to the different temperature adaptations of the two ecotypes. These results suggest that microgametophytic selection can be effective in shifting the mean of the progeny generation; however, the results obtained will vary depending upon the selection pressure, stage of selection, and the parents used.  相似文献   

7.
Pollen of tomato cv. Supermarmande was collected from greenhouse-grown plants at various intervals throughout the year and arbitrarily classified as of high, medium or low respiratory activity on the basis of CO2 production during 8 h incubation in vitro at 30°C, a temperature that is considered to be moderately high for tomato fruit set. After an initial burst of respiration during the first stage of hydration at 30°C (>1 h), the respiration rate of pollen of all three categories declined, the decrease being greater in the lots with a low or medium respiratory activity than in the high category. During hydration (10 min after the start of incubation), the addition of succinate or reduced β-nicotinamide adenine dinucleotide (NADH) to the substrate increased the respiratory rate of slowly-respiring pollen more than that of fast-respiring pollen, but carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and adenosine 5′-diphosphate (ADP) had less effect. After 1–4 h incubation, the respiration rate of the slow- or medium-respiring pollen lots had decreased, but was stimulated by succinate or NADH, and to a lesser degree by ADP. By 7 h, the respiration rate of all pollen lots had declined and was stimulated less by substrate, ADP or CCCP. The oxidation of NADH by tomato pollen contrasts with the failure of other pollen species to utilize this substrate; moreover, a synergistic effect of NADH and succinate was consistently observed. We conclude that the decline in respiration during incubation for up to 4 h at 30°C may reflect a lack of respiratory substrate. After 7 h, however, the decreased response to substrate indicates a loss of mitochondrial integrity or an accumulation of metabolic inhibitors. It is concluded that at 30°C (a moderately high temperature for tomato pollen), the initially high rate of respiration leads to exhaustion of the endogenous respiratory substrates (particularly in pollen with low to medium respiratory activity), but subsequently to ageing and a loss of mitochondrial activity.  相似文献   

8.
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self‐incompatible (SI) and the male parent self‐compatible (SC) (the ‘SI × SC rule’). Additional, as yet unknown, UI mechanisms are independent of self‐incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen‐side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S‐RNase, the pistil determinant of S‐specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18‐fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9‐generated knockout mutants (fps2) in S. pennelliiLA0716 are self‐sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2‐based pollen selectivity does not involve S‐RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.  相似文献   

9.
Summary All possible crosses among 5 strains of Gossypium hirsutum were made, and the pollen tubes were grown in vivo for 4 h before being fixed, stained and measured. Temperatures ranging from 18.5 to 40.0 °C were tested for pollen germination and pollen tube growth. The optimal temperature for pollen tube growth was 30.0 °C. Relative humidity levels of 0 to 100% were used as a pre-pollination treatment of the pollen. Significant differences among the mean pollen tube length of the strains occurred due to pollenXstyle interactions. The strains also differed in the number of styles which did not support pollen tube growth. These differences were also due to pollenXstyle interactions. Pollen and style strains could be ranked according to their relative contribution to pollen tube length.College of Agricultural Sciences Publication Number T-4-189  相似文献   

10.
Nicotiana tabacum was used as a pistillate parent and crossed with three self-compatible species, N. rustica, N. repanda and N. trigonophylla, which were previously reported to have pollen tubes unilaterally inhibited by N. tabacum pistil. Temporal and morphological observations revealed distinct differences of pollen tube behavior among these incongruous crosses. Pollen tubes of N. repanda were arrested in stigma and those of N. rustica in the middle of the style. On the other hand, pollen tubes of N. trigonophylla continued growing at a slow rate. Tubes of N. repanda and N. rustica showed morphological abnormalities such as swelling, thick wall, and irregular callose deposition. In addition, tubes of N. rustica often elongated in reverse direction and wound about in the middle of the style. Although the tubes of N. trigonophylla were apparently normal in morphology, they were distributed throughout the transmitting tissue, differing from the self-pollination of N. tabacum in which they were confined to the peripheral region of it. The diversity of pollen tube behavior indicates that physiological causes of incongruity are different among the three crosses. Bud pollination enabled pollen tubes to reach the ovary in all crosses, indicating that the N. tabacum pistil acquired its ability to inhibit foreign pollen tube elongation with its development. When interspecific hybrids between N. tabacum and the other three species were pollinated by parental species, tubes reached the ovary in all crosses, but the elongation rate of tubes slowed down and morphology was abnormal.  相似文献   

11.
Guar (Cyamopsis tetregonoloba (L.) may be grown when soil temperatures are potentially high enough at the time of planting to inhibit nodulation and N2 fixation. An experiment was conducted using controlled conditions to determine the influence of high root temperature on growth and N2 fixation of guar. The experiment included two strains of rhizobia, two varieties of guar, two mineral N treatments, and root temperatures of 34, 37, and 40°C. Plants were grown for 44 days. The root temperature of 40°C reduced N fixation by at least 80% and nodule weight by more than 50%. Significant interactions occurred between most factors in influencing nodulation, N2 fixation and dry matter production. Guar, nodulated by rhizobial strain GAR022-1 and fully dependent on N2 fixation or provided with starter mineral N (25 mg pot–1), was not influenced by the root temperature of 37°C as compared to 34°C. Nodulation and N2 fixation by strain 32H1 was reduced by at least 40% when no starter mineral N was provided and the root temperature was 37°C. Providing starter mineral N to one variety of guar doubled the quantity of N2 fixed by strain 32H1 at both 34 and 37°C but N2 fixation was lower at the higher root temperature. It appears that root temperatures between 37° and 40°C bracketed the critical root temperature for N2 fixation by nodulated guar and that the critical root temperature for guar dependent on mineral N was above 40°C.  相似文献   

12.
Summary The inheritance of heat-stable resistance to the root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, was studied in crosses between different accessions and clones of Lycopersicon peruvianum L. F1, F2 and BC1 generations were evaluated for their index of resistance based on numbers of eggs and infective second-stage juveniles (J2) per gram of root, and the segregation ratios were determined in experiments carried out at constant soil temperatures of 25 °C and 30 °C. L. peruvianum P.I. 270435 clones 3 MH and 2R2 and P.I. 126443 clone 1 MH, all heatstable resistant, were crossed with L. peruvianum P.I. 126440 clone 9 MH, which is susceptible at both 25 °C and 30 °C. All F1 progeny were resistant at 25 °C and 30 °C; F2 and BC1 generations at 25 °C gave resistant: susceptible (RS) ratios of 151 and 31, respectively, which suggests that resistance is conditioned by two independently assorting genes. However, at 30 °C, RS ratios of 31 and 11 were observed for the F2 and BC1 generations, respectively. These results indicate that heat-stable resistance is conferred by a single dominant gene expressed at 30 °C, while the second resistance gene is heat unstable and not expressed at 30 °C. P.I. 270435 clones 2R2 and 3 MH and P.I. 126443 clone 1 MH were crossed with P.I. 128657 clone 3 R4 (source of gene Mi), which is resistant at 25 °C but susceptible at 30 °C. All of the F1 progeny were resistant at 25 °C and 30 °C.TC1 progeny of 270435-2 R2 x 128657-3 R4, 270435-3 MH x 128657-3 R4 and 126443-1 MH x 128657-3 R4 crossed with susceptible 126440-9 MH were all resistant at 25 °C and segregated in a 11 ratio at 30 °C. These results also suggest that the heat-stable resistance is monogenic and that it is non-allelic to gene Mi. The non-segregation of TC1 progenies at 25 °C, suggests that the heat-unstable resistance factor in L. peruvianum P.I. 270435 clones 2 R2 and 3 MH and in P.I. 126443 clone 1 MH is allelic to or the same as gene Mi. We propose the symbol Mi-2 for the gene in P.I. 270435 that confers heat-stable resistance to M. incognita.  相似文献   

13.
Near-isogenic wheat lines differing in height-reducing (Rht) alleles, in each of two cultivars, were used to investigate the effects of light intensity and of their interaction with temperature and GA3 application, on the elongation of the coleoptile and the first seedling leaf. Darkness caused a conspicuous increase in the lengths of the coleoptile and of the sheath and lamina of the first leaf, in GA3 treated and untreated seedlings of all genotypes grown at 11 and 25°C. The genotype effects and the effects of light intensity and GA3 application on leaf length were ascribed entirely to their effects on the rate of leaf elongation since the duration of leaf elongation was not affected by these factors. Temperature elevation from 11 to 25°C caused a 55% shortening of the duration of leaf elongation and a concomitant increase in elongation rate, which diminished with increased genotypic dwarfness. Accordingly, temperature elevation resulted in a significant reduction in leaf-length of the light-grown dwarf genotypes and the dark-grown dwarf and semi-dwarf genotypes. It is suggested that this temperature × light × genotype interaction effect is due to environmental dependent upper limits of elongation rate set by the Rht alleles.Abbreviations PAR Photosynthetic Active Radiation  相似文献   

14.
It is important to understand the effects of environmental conditions during plant growth on longevity and temperature response of pollen. Objectives of this study were to determine the influence of growth temperature and/or carbon dioxide (CO2) concentration on pollen longevity and temperature response of peanut and grain sorghum pollen. Plants were grown at daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34 °C at ambient (350 μmol mol−1) and at elevated (700 μmol mol−1) CO2 from emergence to maturity. At flowering, pollen longevity was estimated by measuring in vitro pollen germination at different time intervals after anther dehiscence. Temperature response of pollen was measured by germinating pollen on artificial growth medium at temperatures ranging from 12 to 48 °C in incubators at 4 °C intervals. Elevated growth temperature decreased pollen germination percentage in both crop species. Sorghum pollen had shorter longevity than peanut pollen. There was no influence of CO2 on pollen longevity. Pollen longevity of sorghum at 36/26 °C was about 2 h shorter than at 32/22 °C. There was no effect of growth temperature or CO2 on cardinal temperatures (Tmin, Topt, and Tmax) of pollen in both crop species. The Tmin, Topt, and Tmax identified at different growth temperatures and CO2 levels were similar at 14.9, 30.1, and 45.6 °C, respectively for peanut pollen. The corresponding values for sorghum pollen were 17.2, 29.4, and 41.7 °C. In conclusion, pollen longevity and pollen germination percentage was decreased by growth at elevated temperature, and pollen developed at elevated temperature and/or elevated CO2 did not have greater temperature tolerance.  相似文献   

15.
The effect of day/night temperature regimes on stem elongation and on the content of endogenous gibberellins (GAs) in vegetatively propagated plants of Campanula isophylla cv. Hvit have been studied. Compared with a constant temperature regime at 18°C (18/18°C), stem and internode elongation was enhanced significantly by a combination of high day/low night temperature (21/15°C) and inhibited by an opposite regime (15/21°C). Gibberellins A1, A19, A44, A53, and A97 were identified as endogenous components in Campanula. (GA97 was earlier referred to as 2-OH-GA53.) Quantitative analysis of the endogenous GAs indicates that temperature regimes that stimulate elongation growth are accompanied by an increase in the level of GA1, GA19, and GA44. On the other hand, in plants grown under conditions that reduced stem elongation growth, there was an increased level of GA97.Abbreviations DIF difference between day temperature and night temperature - GA gibberellin - HPLC high performance liquid chromatography - GC-MS gas chromatography-mass chromatography - SPE solid phase extraction - TMS trimethylsilyl - MSTFA N-methyl-N-TMS-trifluoroacetamide - KRI Kovats retention index - SIM selected ion monitoring - D2 deuterated  相似文献   

16.
The life table and biological characteristics of the predatory bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae) were studied when the bugs were fed with Myzus persicae (Sulzer) (Homoptera: Aphididae) feeding on eggplant and with Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) feeding on tomato plants. The tests were done at five temperatures between 15 and 30 °C, using a L16:D8 photoperiod and 65 ± 5% r.h. Most eggs (range 85 to 90%) hatched at 15 and 20 °C. Incubation period was shortest at 27.5 °C (8.45 and 8.38 days on eggplant and tomato, respectively). Preoviposition was also shortest at 27.5 °C (5.10 and 4.75 days on eggplant and tomato, respectively) whereas fecundity was highest at 20 °C (213.90 and 228.25 eggs on eggplant and tomato, respectively). Maximum longevity of females was at 15 °C (122.40 and 129.35 days on eggplant and tomato, respectively). Mean generation time was longest at 15 °C on both host plants (122.75 and 124.64 days, respectively). The intrinsic rate of increase of M. pygmaeus was highest at 27.5 °C with similar values on eggplant (0.0981 day–1) and tomato (0.1040 day–1). Doubling time was shortest at 27.5 °C (7.06 and 6.67 days on eggplant and tomato, respectively) and, also, finite rate of increase was highest at 27.5 °C (1.1031 and 1.1096 on eggplant and tomato, respectively). The results show that the predator M. pygmaeus develops well on the aphid M. persicae or on the whitefly T. vaporariorum, both of which are important pests of vegetable crops. This predator is also well adapted to the temperatures that occur both in greenhouses and in the open field in the Mediterranean region. Compared to other natural enemies of whiteflies, such as Encarsia formosa Gahan (Hymenoptera: Aphelinidae), Macrolophus pygmaeus can increase at relatively low temperatures.  相似文献   

17.
Summary AnS 1.1 self-incompatible (SI) petunia plant which showed atypical seed set was found in an I7 population. This plant showed a strong SI reaction when selfed but produced varying amounts of seed when used as the seed parent in crosses with unrelated individuals homozygous for the sameS allele. Reciprocal crosses yielded no seed indicating that the reaction was a stylar response. Self seed obtained by high temperature treatments produced 18 plants, all of which exhibited the parental characteristics, the ability to reject self pollen but accept, to varying degrees, pollen bearing the sameS allele from unrelated plants. Several petunias homozygous forS 1, and exhibiting various levels of PSC as determined by self seed set, progeny tests and temperature treatments, were used as pollen parents. The mean seed set of these crosses produced a ranking of the pollen parents which reflected the PSC levels obtained by other methods. The behavior of the F1 and F2 populations suggests that the pollen discriminating ability may be a simply inherited, dominant character in these plants. The styles of these unusual petunias illustrate the participation of the pollen tube in determining PSC.Scientific Journal Series Paper Number 10.479 of the Minnesota Agricultural Experiment Station  相似文献   

18.
Biology and life table parameters of Brennandania lambi (Krczal) were studied at different temperatures while feeding on white mushroom (Agaricus bisporus) mycelium cultured on mushroom compost. The duration of egg and larva development, preoviposition and oviposition period, female longevity, and the time to 50% mortality declined as temperature increased from 16 to 28°C. The threshold temperature of development (female) was 9°C and the thermal constant for completion of development (female) was 195 day-degrees. At 16, 20, 24 and 28°C, the total fecundity (eggs/female) was 71, 67, 66 and 57, respectively and the daily fecundity rate (eggs/female/day) was 5.6, 8.7, 8.7 and 9.1, respectively. The sex ratio (female/male) ranged from 1.9 to 2.1 at 16–28°C. At 16, 20, 24 and 28°C, the intrinsic rate of natural increase (r m) was 0.11, 0.18, 0.22 and 0.27, respectively, and the population doubling time was 6.1, 3.9, 3.2 and 2.5 days, respectively. All life stages of the mite died when exposed to 35°C constant temperature for 24h, or to 32°C constant temperature for 12 days or to 31–35°C (average 32.9°C) ambient temperature for 4 days. Brennandania lambi completed development only when fed on Ag. bisporus mycelium growing on mushroom compost. It could not survive on mushroom mycelia of Auricularia auricula, Au. polytricha, Ganoderma lucidum, Hericium erinaceus, Lentinus edodes, Pleurotus ostreatus, P. sajor-caju and Tremella fuciformis.  相似文献   

19.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

20.
Cold storage of Trichogramma ostriniae reared on Sitotroga cerealella eggs   总被引:1,自引:0,他引:1  
Efficient storage of the biological controlagent Trichogramma ostriniae couldimprove current parasitoid production methodsby making the system more flexible andefficient. Initial studies compared emergencerates of T. ostriniae reared onSitotroga cerealella eggs held at 6 °C, 9 °C, 12 °C,15 °C, and 24 °C for up to 8 weeks after parasitism.At 15 °C, emergence occurred in <2 weeks.Emeregence was >80% for parasitized eggsstored at 9 °C and 12 °C for 4 and 6 weeksrespectively. Storage at 6 °C caused asignificant decline in emergence after 2 weeks. Subsequent trials focused on fitness of storedT. ostriniae. Percentage of emergedfemales parasitizing eggs, female longevity,and fecundity were quantified after storage.The percentage of females successfullyparasitizing O. nubilalis eggs wasgreatest for the 9 °C four-week treatment(100%). Compared to 24 °C controls, storage at12 °C for 6 weeks or at 9 °C for 8 weeks reduced thepercentage of females parasitizing. Longevityof females held in cold storage was generallyless than that of controls. Rates of parasitismby stored Trichogramma was generallysimilar to controls after 2 to 4 weeks' storageat 9 °C and 12 °C but declined with storage longerthan 4 weeks. Emergence of progeny of cold-storedfemales was lower than controls for alltreatments. The percentage of female progenyfrom cold stored females was comparable tocontrols up to 4 weeks of storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号