首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(alpha2-6) galactose(beta1-4)glucose or sialic acid(alpha2-3)galactose(beta1-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.  相似文献   

2.
Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for α2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For α2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with α2-6- and α2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for α2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.  相似文献   

3.
A recently emerged novel influenza A (H1N1) virus continues to spread globally. The pandemic caused by this new H1N1 swine influenza virus presents an opportunity to analyze the evolutionary significance of the origin of the new strain of swine flu. Our study clearly suggests that strong purifying selection is responsible for the evolution of the novel influenza A (H1N1) virus among human. We observed that the 2009 viral sequences are evolutionarily widely different from the past few years’ sequences. Rather, the 2009 sequences are evolutionarily more similar to the most ancient sequence reported in the NCBI Influenza Virus Resource Database collected in 1918. Analysis of evolutionary rates also supports the view that all the genes in the pandemic strain of 2009 except NA and M genes are derived from triple reassorted swine viruses. Our study demonstrates the importance of using complete-genome approach as more sequences will become available to investigate the evolutionary origin of the 1918 influenza A (H1N1) swine flu strain and the possibility of future reassortment events.  相似文献   

4.
The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA) to α2→6 sialylated glycan receptors (human receptors). Here we report that a single point mutation (Ile219→Lys; a base pair change) in the glycan receptor-binding site (RBS) of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics) transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses.  相似文献   

5.
Swine Influenza Virus (H1N1) is a known causative agent of swine flu. Transmission of Swine Influenza Virus form pig to human is not a common event and may not always cause human influenza. The 2009 outbreak by subtype H1N1 in humans is due to transfer of Swine Influenza Virus from pig to human. Thus to analyze the origin of this novel virus we compared two surface proteins (HA and NA) with influenza viruses of swine, avian and humans isolates recovered from 1918 to 2008 outbreaks. Phylogenetic analyses of hemagglutinin gene from 2009 pandemic found to be clustered with swine influenza virus (H1N2) circulated in U.S.A during the 1999-2004 outbreaks. Whereas, neuraminidase gene was clustered with H1N1 strains isolated from Europe and Asia during 1992-2007 outbreaks. This study concludes that the new H1N1 strain appeared in 2009 outbreak with high pathogenicity to human was originated as result of re-assortment (exchange of gene). Moreover, our data also suggest that the virus will remain sensitive to the pre-existing therapeutic strategies.  相似文献   

6.
Molecular dynamics (MD) simulations were carried out to study the behavior of human receptor molecule in the hemagglutinin (HA) of 1918 and 2009 H1N1 influenza viruses respectively. The 2009 HA model was obtained by virtually mutating the 1918 HA crystal structure based on A/Mexico City/MCIG01/2009(H1N1) segment 4 sequence. We found that human receptor molecule has no binding preference between the 2009 HA and the 1918 HA. In addition, among the four sugar moieties in the human receptor molecule, sialic acid contributes the most to the electrostatic and non-polar interaction energy during binding. Furthermore, the hydrogen bonds between sialic acid and the surrounding residues in 1918 HA are preserved in 2009 HA. We also found that the mutated residues contribute to a more favorable binding of hemagglutinin to the human receptor molecule.  相似文献   

7.
Masoodi TA  Shaik NA  Shafi G  Munshi A  Ahamed AK  Masoodi ZA 《Gene》2012,491(2):200-204
To gain insight into the possible origin of the hemagglutinin of 2009 outbreak, we performed its comparative analysis with hemagglutinin of influenza viral strains from 2005 to 2008 and the past pandemics of 1977, 1968, 1957 and 1918. This insilico analysis showed a maximum sequence similarity between 2009 and 1918 pandemics. Primary structure analysis, antigenic and glycosylation site analyses revealed that this protein has evolved from 1918 pandemic. Phylogenetic analysis of HA amino acid sequence of 2009 influenza A(H1N1) viruses indicated that this virus possesses a distinctive evolutionary trait with 1918 influenza A virus. Although the disordered sequences are different among all the isolates, the disordered positions and sequences between 2009 and 1918 isolates show a greater similarity. Thus these analyses contribute to the evidence of the evolution of 2009 pandemic from 1918 influenza pandemic. This is the first computational evolutionary analysis of HA protein of 2009 H1N1 pandemic.  相似文献   

8.
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population.  相似文献   

9.
Zhang Y  Zhang Q  Gao Y  He X  Kong H  Jiang Y  Guan Y  Xia X  Shu Y  Kawaoka Y  Bu Z  Chen H 《Journal of virology》2012,86(18):9666-9674
Animal influenza viruses pose a clear threat to public health. Transmissibility among humans is a prerequisite for a novel influenza virus to cause a human pandemic. A novel reassortant swine influenza virus acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. However, the molecular aspects of influenza virus transmission remain poorly understood. Here, we show that an amino acid in hemagglutinin (HA) is important for the 2009 H1N1 influenza pandemic virus (2009/H1N1) to bind to human virus receptors and confer respiratory droplet transmissibility in mammals. We found that the change from glutamine (Q) to arginine (R) at position 226 of HA, which causes a switch in receptor-binding preference from human α-2,6 to avian α-2,3 sialic acid, resulted in a virus incapable of respiratory droplet transmission in guinea pigs and reduced the virus's ability to replicate in the lungs of ferrets. The change from alanine (A) to threonine (T) at position 271 of PB2 also abolished the virus's respiratory droplet transmission in guinea pigs, and this mutation, together with the HA Q226R mutation, abolished the virus's respiratory droplet transmission in ferrets. Furthermore, we found that amino acid 271A of PB2 plays a key role in virus acquisition of the mutation at position 226 of HA that confers human receptor recognition. Our results highlight the importance of both the PB2 and HA genes on the adaptation and transmission of influenza viruses in humans and provide important insights for monitoring and evaluating the pandemic potential of field influenza viruses.  相似文献   

10.
The current pandemic influenza A (H1N1) virus has revealed a complicated reassortment of various influenza A viruses. The biological study of these viruses, especially of the viral envelope proteins hemagglutinin (HA) and neuraminidase (NA), is urgently needed for the control and prevention of H1N1 viruses. We have generated H1N1-2009 and H1N1-1918 pseudotyped particles (pp) with high infectivity. Combinations of HA1918 + NA2009 and HA2009 + NA1918 also formed infectious H1N1pps, among which the HA2009 + NA1918 combination resulted in the most highly infectious pp. Our study demonstrated that some reassortments of H1N1 viruses may hold the potential to produce higher infectivity than do their ancestors.  相似文献   

11.
The existing H1N1 (2009) swine flu is pandemic in nature and is responsible for global economic losses and fatalities. Among the eight gene segments of H1N1, hemagglutinin (HA) plays a major role in the attachment of the virus to the host cell surface and entry of viral RNA into the host cell leads to infection. In this study, sequence and phylogenetic analysis of the H1N1 (2009) HA, from Mexico City along with 1952 sequences, from different subtypes of pandemic influenza A virus were studied and results showed that the closest relationship of H1N1 (2009) Mexico strain was with the H1N1 (2007) Mallard Norway strain. Analysis of secondary structures predicted from the protein sequence revealed that diminishing of alpha helixes was observed in many areas of the sequences between the years 2005 to 2010. Conversely, analysis at the structural level is necessary to critically assess the functional significance. Structural level investigation was therefore done for the above said proteins by constructing the 3D structure of these proteins through homology modeling. The models were validated and structural level similarities were evaluated through superimposition. Subsequently, docking studies were done to find the binding mode of the sialic acid (SA) with influenza HA. Molecular dynamics simulations were executed to study the interactions of SA molecule with the HA. Energetic analysis reveals that van der Waal interaction is more favorable for binding of HA with SA of the whole influenza virus. Binding pocket analysis shows that intensities of H-bond donor and acceptor are more in H1N1 (2009).  相似文献   

12.
Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.  相似文献   

13.
In the early 1970s, a human influenza A/Port Chalmers/1/73 (H3N2)-like virus colonized the European swine population. Analyses of swine influenza A (H3N2) viruses isolated in The Netherlands and Belgium revealed that in the early 1990s, antigenic drift had occurred, away from A/Port Chalmers/1/73, the strain commonly used in influenza vaccines for pigs. Here we show that Italian swine influenza A (H3N2) viruses displayed antigenic and genetic changes similar to those observed in Northern European viruses in the same period. We used antigenic cartography methods for quantitative analyses of the antigenic evolution of European swine H3N2 viruses and observed a clustered virus evolution as seen for human viruses. Although the antigenic drift of swine and human H3N2 viruses has followed distinct evolutionary paths, potential cluster-differentiating amino acid substitutions in the influenza virus surface protein hemagglutinin (HA) were in part the same. The antigenic evolution of swine viruses occurred at a rate approximately six times slower than the rate in human viruses, even though the rates of genetic evolution of the HA at the nucleotide and amino acid level were similar for human and swine H3N2 viruses. Continuous monitoring of antigenic changes is recommended to give a first indication as to whether vaccine strains may need updating. Our data suggest that humoral immunity in the population plays a smaller role in the evolutionary selection processes of swine H3N2 viruses than in human H3N2 viruses.  相似文献   

14.
A phylogenetic analysis of 52 published and 37 new nucleoprotein (NP) gene sequences addressed the evolution and origin of human and swine influenza A viruses. H1N1 human and classical swine viruses (i.e., those related to Swine/Iowa/15/30) share a single common ancestor, which was estimated to have occurred in 1912 to 1913. From this common ancestor, human and classical swine virus NP genes have evolved at similar rates that are higher than in avian virus NP genes (3.31 to 3.41 versus 1.90 nucleotide changes per year). At the protein level, human virus NPs have evolved twice as fast as classical swine virus NPs (0.66 versus 0.34 amino acid change per year). Despite evidence of frequent interspecies transmission of human and classical swine viruses, our analysis indicates that these viruses have evolved independently since well before the first isolates in the early 1930s. Although our analysis cannot reveal the original host, the ancestor virus was avianlike, showing only five amino acid differences from the root of the avian virus NP lineage. The common pattern of relationship and origin for the NP and other genes of N1N1 human and classical swine viruses suggests that the common ancestor was an avian virus and not a reassortant derived from previous human or swine influenza A viruses. The new avianlike H1N1 swine viruses in Europe may provide a model for the evolution of newly introduced avian viruses into the swine host reservoir. The NPs of these viruses are evolving more rapidly than those of human or classical swine viruses (4.50 nucleotide changes and 0.74 amino acid change per year), and when these rates are applied to pre-1930s human and classical swine virus NPs, the predicted date of a common ancestor is 1918 rather than 1912 to 1913. Thus, our NP phylogeny is consistent with historical records and the proposal that a short time before 1918, a new H1N1 avianlike virus entered human or swine hosts (O. T. Gorman, R. O. Donis, Y. Kawaoka, and R. G. Webster, J. Virol. 64:4893-4902, 1990). This virus provided the ancestors of all known human influenza A virus genes, except for HA, NA, and PB1, which have since been reassorted from avian viruses. We propose that during 1918 a virulent strain of this new avianlike virus caused a severe human influenza pandemic and that the pandemic virus was introduced into North American swine populations, constituting the origin of classical swine virus.  相似文献   

15.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

16.
Summary The hemagglutinin (HA) genes of influenza type A (H1N1) viruses isolated from swine were cloned into plasmid vectors and their nucleotide sequences were determined. A phylogenetic tree for the HA genes of swine and human influenza viruses was constructed by the neighbor-joining method. It showed that the divergence between swine and human HA genes might have occurred around 1905. The estimated rates of synonymous (silent) substitutions for swine and human influenza viruses were almost the same. For both viruses, the rate of synonymous substitution was much higher than that of nonsynonymous (amino acid altering) substitution. It is the case even for only the antigenic sites of the HA. This feature is consistent with the neutral theory of molecular evolution. The rate of nonsynonymous substitution for human influenza viruses was three times the rate for swine influenza viruses. In particular, nonsynonymous substitutions at antigenic sites occurred less frequently in swine than in humans. The difference in the rate of nonsynonymous substitution between swine and human influenza viruses can be explained by the different degrees of functional constraint operating on the amino acid sequence of the HA in both hosts.  相似文献   

17.
Influenza A viruses possess both hemagglutinin (HA), which is responsible for binding to the terminal sialic acid of sialyloligosaccharides on the cell surface, and neuraminidase (NA), which contains sialidase activity that removes sialic acid from sialyloligosaccharides. Interplay between HA receptor-binding and NA receptor-destroying sialidase activity appears to be important for replication of the virus. Previous studies by others have shown that influenza A viruses lacking sialidase activity can undergo multiple cycles of replication if sialidase activity is provided exogenously. To investigate the sialidase requirement of influenza viruses further, we generated a series of sialidase-deficient mutants. Although their growth was less efficient than that of the parental NA-dependent virus, these viruses underwent multiple cycles of replication in cell culture, eggs, and mice. To understand the molecular basis of this viral growth adaptation in the absence of sialidase activity, we investigated changes in the HA receptor-binding affinity of the sialidase-deficient mutants. The results show that mutations around the HA receptor-binding pocket reduce the virus's affinity for cellular receptors, compensating for the loss of sialidase. Thus, sialidase activity is not absolutely required in the influenza A virus life cycle but appears to be necessary for efficient virus replication.  相似文献   

18.
Influenza A virus specificity for the host is mediated by the viral surface glycoprotein hemagglutinin (HA), which binds to receptors containing glycans with terminal sialic acids. Avian viruses preferentially bind to alpha2-3-linked sialic acids on receptors of intestinal epithelial cells, whereas human viruses are specific for the alpha2-6 linkage on epithelial cells of the lungs and upper respiratory tract. To define the receptor preferences of a number of human and avian H1 and H3 viruses, including the 1918 H1N1 pandemic strains, their hemagglutinins were analyzed using a recently described glycan array. The array, which contains 200 carbohydrates and glycoproteins, not only revealed clear differentiation of receptor preferences for alpha2-3 and/or alpha2-6 sialic acid linkage, but could also detect fine differences in HA specificity, such as preferences for fucosylation, sulfation and sialylation at positions 2 (Gal) and 3 (GlcNAc, GalNAc) of the terminal trisaccharide. For the two 1918 HA variants, the South Carolina (SC) HA (with Asp190, Asp225) bound exclusively alpha2-6 receptors, while the New York (NY) variant, which differed only by one residue (Gly225), had mixed alpha2-6/alpha2-3 specificity, especially for sulfated oligosaccharides. Only one mutation of the NY variant (Asp190Glu) was sufficient to revert the HA receptor preference to that of classical avian strains. Thus, the species barrier, as defined by the receptor specificity preferences of 1918 human viruses compared to likely avian virus progenitors, can be circumvented by changes at only two positions in the HA receptor binding site. The glycan array thus provides highly detailed profiles of influenza receptor specificity that can be used to map the evolution of new human pathogenic strains, such as the H5N1 avian influenza.  相似文献   

19.
Influenza is a moving target, which evolves in unexpected directions and is recurrent annually. The 2009 influenza A/H1N1 pandemic virus was unlike the 2009 seasonal virus strains and originated in pigs prior to infecting humans. Three strains of viruses gave rise to the pandemic virus by antigenic shift, reassortment, and recombination, which occurred in pigs as 'mixing vessels'. The three strains of viruses had originally been derived from birds, pigs, and humans. The influenza hemagglutinin (HA) and neuraminidase (NA) external proteins are used to categorize and group influenza viruses. The internal proteins (PB1, PB1-F2, PB2, PA, NP, M, and NS) are involved in the pathogenesis of influenza infection. A major difference between the 1918 and 2009 pandemic viruses is the lack of the pathogenic protein PB1-F2 in the 2009 pandemic strains, which was present in the more virulent 1918 pandemic strains. We provide an overview of influenza infection since 1847 and the advent of influenza vaccination since 1944. Vaccines and chemotherapy help reduce the spread of influenza, reduce morbidity and mortality, and are utilized by the global rapid-response organizations associated with the WHO. Immediate identification of impending epidemic and pandemic strains, as well as sustained vigilance and collaboration, demonstrate continued success in combating influenza.  相似文献   

20.
The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号