首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodiversity of the 5,000 km-long Great Escarpment of southern Africa is currently poorly known, despite hosting half of the subcontinent’s centres of plant endemism and to have a rich endemic vertebrate fauna, particularly in the north-west and east. A country-based overview of endemism, data deficiencies and conservation challenges is provided, with Angola being the country in most need of Escarpment research and conservation. Given that the Escarpment provides most of the subcontinent’s fresh water, protection and restoration of Escarpment habitat providing such ecological services is urgently required. Key research needs are exhaustive biodiversity surveys, systematic studies to test refugia and migration hypotheses, and the effects of modern climate change. Such research results can then be consolidated into effective conservation planning and co-ordinated international efforts to protect the rich biodiversity of the Escarpment and the ecological services it provides.  相似文献   

2.
Dry grasslands are of great interest for nature conservation in Europe, because they have a central role in the conservation of numerous rare and endangered species. In this study carried out in the Brenta mountain group (Italian alps), we investigated the effect of environmental factors mainly controlled by topography, on the biodiversity trends across different dry grassland habitats where the threatened alpine stenoendemic Erysimum aurantiacum grows. Plant community data and ecological factors were analysed by means of a multi‐habitat CCA approach and by analysis of biodiversity gradients in 7 natural and semi‐natural habitats. We found that species turnover and biodiversity patterns vary as a function of multi‐factorial ecological gradients. For the single habitats, elevation gradient was the main factor explaining compositional variation, followed by inclination and proportion of exposed rock surface. Despite its endangered status, E. aurantiacum showed a relatively high degree of ecological plasticity across these semiarid grassland habitats that probably allows it to survive in different environments, including in some cases those impacted by human activities. This prompts for habitat‐ more than species‐level conservation actions. According to their characteristics and threats, habitat‐specific management practices are recommended for long term conservation of plant species communities in the different ecological niches.  相似文献   

3.
Density dependent habitat selection at the community level is regarded as a major determinant of biodiversity at the local scale, and data on these processes and how they are affected by human activities is highly applicable to conservation. By studying the competitive relationships between a specialist and a generalist we can acquire valuable insights about how different environmental elements determine species abundance and distribution and consequently biodiversity. Here we describe a study of density dependent processes that determine the community structure of two rodents: a specialist—the broad toothed mouse (Apodemus mystacinus), and a generalist—the common spiny mouse (Acomys cahirinus) in a Mediterranean maqui habitat, and how this structure is impacted by anthropogenic planting of pine stands. We carried out two field experiments: The first, based on open field trapping, looking at how rodent communities change with habitat structure. The second experiment was an enclosure study aimed at validating the habitat preferences and competitive relationship between the specialist and the generalist. We identified asymmetric competition relationships in which the specialist was dominant over the generalist. Competition intensity was lower in maqui with >10% oak cover, although both species abundances were high. Competition was found only during the limiting season (summer). Based on these findings we produced management recommendations to keep indigenous small mammals’ biodiversity high. Density dependent habitat selection processes play a central role in determining biodiversity, and understanding the mechanisms motivating these processes is needed if alterations in biodiversity in response to human disturbance are to be understood.  相似文献   

4.
Whilst there is overwhelming scientific evidence that dramatic changes in regional climates are likely to occur throughout the 21st century, the scientific community remains uncertain how the effects of global heating will combine with other environmental factors to affect wild orchid populations. It is, however, likely that many populations will be affected adversely and that in situ conservation techniques by themselves will not be sufficient to prevent the extinction of many species. A range of complimentary ex situ strategies are discussed. Amongst these orchid seed banking has been shown to be an invaluable tool for conserving the maximum amount of genetic diversity in the minimum space and has the potential to enable the conservation of valuable material for possible re-introduction and habitat restoration programmes in the future. The Darwin Initiative project, ‘Orchid Seed Stores for Sustainable Use’ (OSSSU), is currently establishing a global network of orchid seed banks focussing initially on countries with high orchid biodiversity in Asia and Latin America. Particular reference is made to ex situ conservation in China, together with the urgent need to gather more data to determine which habitats and species are most at risk of extinction in the wild in the immediate future.  相似文献   

5.
The threat to biodiversity due to invasive alien species is considered second only to that of habitat loss. Given the large number of species that are currently invading ecosystems all over the world, we need to distinguish invaders with minor effects from those with large effects in order to prioritize management efforts. Ecological niche models can be used to predict the potential distribution of an invasive species from occurrence records and environmental data layers. We used the Ecological Niche Factor Analysis (ENFA), a presence-only predictive modelling approach, to describe the invasive ring-necked parakeets’ realized niche and to identify areas suitable for the parakeet in northern Belgium. ENFA proved to be a robust and reliable modelling technique, able to gauge the ecological requirements of an invasive species without the need to include historical information on the starting point of the invasion. ENFA shows that the parakeets tend to occupy relatively rare habitats compared to the main environmental conditions in northern Belgium, although they show some tolerance for environmental conditions inside parks and forests. The general distribution of the ring-necked parakeet is governed primarily by the amount of older forest patches, parks and built-up area in the landscape—reflecting the parakeets’ need for suitable nesting cavities and its reliance upon urban areas to forage. Our resulting habitat suitability maps show that the parakeets have ample room to further increase their range in northern Belgium. Our results indicate some concern for increased competition between parakeets and the nuthatches, native cavity nesters known to suffer from competition with parakeets, as some regions known as nuthatch strongholds are highly likely to be invaded by the parakeets.  相似文献   

6.
If a common set of landscape characteristics seem to predict spatial patterns of biodiversity in several regions with different biogeographic histories and community compositions, these could inform conservation. Two papers recently published in Journal of Insect Conservation provided evidence that topographic heterogeneity can play a major role in harbouring invertebrate community biodiversity, and that upland areas potentially function as refugia from infrequent but severe climatic conditions that occur over ecological timescales. Similar findings are being echoed in the growing body of phylogeographic literature on terrestrial invertebrates from montane landscape settings. The purpose of this short communication is to place the two recently published papers into a broader context. Phylogeographic studies usually focus on genetic diversity within and among populations, and at relatively deep evolutionary timescales. The parallels that appear to be emerging across different levels of biological organisation and temporal spectra suggest that (1) microevolutionary processes operating at the level of populations may ‘scale-up’ to macroevolutionary processes operating at the level of species or higher, and (2) certain landscape features—particularly topography—may be particularly important when formulating strategies to protect terrestrial invertebrate biodiversity.  相似文献   

7.
Freshwater pearl mussels (Margartifera margaritifera L.) are among the most critically threatened freshwater bivalves worldwide. The pearl mussel simultaneously fulfils criteria of indicator, flagship, keystone and umbrella species and can thus be considered an ideal target species for the process conservation of aquatic ecosystem functioning. The development of conservation strategies for freshwater pearl mussels and for other bivalve species faces many challenges, including the selection of priority populations for conservation and strategic decisions on habitat restoration and/or captive breeding. This article summarises the current information about the species’ systematics and phylogeny, its distribution and status as well as about its life history strategy and genetic population structure. Based on this information, integrative conservation strategies for freshwater mollusc species which combine genetic and ecological information are discussed. Holistic conservation strategies for pearl mussels require the integration of Conservation Genetics and Conservation Ecology actions at various spatial scales, from the individual and population level to global biodiversity conservation strategies. The availability of high resolution genetic markers for the species and the knowledge of the critical stages in the life cycle, particularly of the most sensitive post-parasitic phase, are important prerequisites for conservation. Effective adaptive conservation management also requires an evaluation of previous actions and management decisions. As with other freshwater bivalves, an integrative conservation approach that identifies and sustains ecological processes and evolutionary lineages is urgently needed to protect and manage freshwater pearl mussel diversity. Such research is important for the conservation of free-living populations, as well as for artificial culturing and breeding techniques, which have recently been or which are currently being established for freshwater pearl mussels in several countries.  相似文献   

8.
Voluntary conservation agreements are commonly used to stem the impact of habitat destruction and degradation on terrestrial biodiversity. Past studies that aim to inform how resources for conservation should be allocated across land parcels have assumed the costs of securing conservation on sites can be estimated solely on the basis of the value of alternative land uses. However, in a voluntary negotiation, a landowner could hold-out for a higher payment based on a conservation group or agency’s willingness-to-pay by leveraging the value of biodiversity on the property. We examine landowners’ ability to leverage and the consequences for conservation planning. To explore this, we first use an analytical approximation that simplifies the situation to one where a conservation group prioritizes one site for acquisition. Landowners’ ability to hold-out for higher payments in this situation ranges from approximately 17% to 55% of the value of alternative land uses on the site. We show that landowners’ ability to hold-out for higher payments is more sensitive to variance in the value of alternative land uses than variance in the biodiversity value across properties and is highest when the two factors negatively covary. Next, we consider multi-site selection decisions accounting for community complementarity across parcels. We find that leverage potential can be significantly higher in this context, with a maximum increase of 237% of the value of alternative land uses, and that community irreplaceability is correlated with landowners’ ability to leverage. If one landowner holds out for a higher payment, it has implications for what other parcels should be priorities for protection.  相似文献   

9.
Plantations are established for a variety of reasons including wood production, soil and water conservation, and more recently, carbon sequestration. The effect of this growing land-use change on biodiversity, however, is poorly understood and considerable debate exists as to whether plantations are ‘green deserts’ or valuable habitat for indigenous flora and fauna. This paper synthesizes peer-reviewed articles that provide quantitative data on plant species richness in plantations and paired land uses, most often representative of pre-plantation land cover. The results of this synthesis suggest that the value of plantations for biodiversity varies considerably depending on whether the original land cover is grassland, shrubland, primary forest, secondary forest, or degraded or exotic pasture, and whether native or exotic tree species are planted. The results of this study suggest that plantations are most likely to contribute to biodiversity when established on degraded lands rather than replacing natural ecosystems, such as forests, grasslands, and shrublands, and when indigenous tree species are used rather than exotic species. These findings can help guide afforestation and reforestation programs, including those aimed at increasing terrestrial carbon sequestration.  相似文献   

10.
Abstract. Conservation seeks ultimately to protect and maintain biodiversity indefinitely. Most biodiversity features targeted in past conservation planning have been largely aspects of ecological and biogeographical pattern rather than process. However, the persistence of biodiversity can only be ensured through consideration of the ecological and evolutionary processes that underpin biodiversity, as well as its present spatial pattern. This paper identifies spatial surrogates of ecological and evolutionary processes for regional conservation planning in one of the world's biodiversity hotspots, the Cape Floristic Region. We identified six types of spatial components (namely edaphic interfaces, upland–lowland interfaces, sand movement corridors, riverine corridors, upland–lowland gradients and macroclimatic gradients) as surrogates for key processes such as ecological and geographical diversification, and species migration. Spatial components were identified in a GIS using published data and expert knowledge. Options for achieving targets for process components have been seriously compromised by habitat transformation. Between 30 and 75% of the original extent of the spatial components currently remain functional. Options for achieving upland–lowland and macroclimatic gradients are very limited in the lowlands where most of the habitat has been transformed by agriculture. We recommend that future studies place their research on ecological and evolutionary processes in a spatially explicit framework. Areas maintaining adaptive diversification (e.g. environmental gradients, ecotones) or containing historically isolated populations should be identified and protected. The spatial dimensions of eco-logical processes such as drought and fire refugia also need to be determined and such insights incorporated in conservation planning. Finally, connectivity within these areas should be ensured to maintain species migration and gene flow.  相似文献   

11.
The Rhytidae (Mollusca; Gastropoda; Pulmonata) are a group of large carnivorous land snails distributed in the southern hemisphere, with a particularly rich fauna in New Zealand. The endemic genus Powelliphanta consists of at least 10 species and many more recognised subspecies, most of which are restricted to the western margin of South Island, New Zealand. Powelliphanta taxa tend to have restricted ecological and spatial ranges among the mountains of this region, with some species being limited to lowland forest and others to habitats at or above the treeline. Among recent discoveries is a population of snails occupying habitat on and around a peak called Mt Augustus, which is situated at the edge of a large and economically important coalfield. Since recognition of the potential biological significance of the Mt Augustus snails in 2004, almost all of their habitat has been destroyed by opencast mining revealing a direct conflict between economic and biodiversity prioritisation. Our analysis of mtDNA sequence data indicate Powelliphanta “Augustus” is a distinctive evolutionary lineage, more closely related to a nearby lowland species Powelliphanta lignaria than the spatial and ecological neighbour Powelliphanta patrickensis. Powelliphanta “Augustus” appears to be a specialised local endemic species. Despite a growing international awareness of the importance of biodiversity conservation, the demand for foreign earnings continues to take priority over the protection of our biota.  相似文献   

12.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

13.
The efforts to protect biological diversity must be prioritized because resources for nature conservation are limited. Conservation prioritization can be based on numerous criteria, from ecological integrity to species representation, but in this review I address only species-level prioritization. Criteria used for species prioritization range from aesthetical to evolutionary considerations, but I focus on the aspects that are biologically relevant. I distinguish between two main aspects of diversity that are used as objectives: Maintenance of biodiversity pattern, and maintenance of biodiversity process. I identify two additional criteria typically used in species prioritization that serve for achieving the objectives: The species’ need of protection, and cost and effectiveness of conservation actions. I discuss how these criteria could be combined with either of the objectives in a complementarity-based benefit function framework for conservation prioritization. But preserving evolutionary process versus current diversity pattern may turn out to be conflicting objectives that have to be traded-off with each other, if pursued simultaneously. Although many reasonable criteria and methods exist, species prioritization is hampered by uncertainties, most of which stem from the poor quality of data on what species exist, where they occur, and what are the costs and benefits of protecting them. Surrogate measures would be extremely useful but their performance is still largely unknown. Future challenges in species prioritization lie in finding ways to compensate for missing information.  相似文献   

14.
The fauna of dynamic riverine landscapes   总被引:13,自引:2,他引:13  
1.  Riverine landscapes are heterogeneous in space (complex mosaic of habitat types) and time (expansion and contraction cycles, landscape legacies). They are inhabited by a diverse and abundant fauna of aquatic, terrestrial and amphibious species.
2.  Faunal distribution patterns are determined by interactive processes that reflect the landscape mosaic and complex environmental gradients. The life cycles of many riverine species rely upon a shifting landscape mosaic and other species have become adapted to exploit the characteristically high turn-over of habitats.
3.  The complex landscape structure provides a diversity of habitats that sustains various successional stages of faunal assemblages. A dynamic riverine landscape sustains biodiversity by providing a variety of refugia and through ecological feedbacks from the organisms themselves (ecosystem engineering).
4.  The migration of many species, aquatic and terrestrial, is tightly coupled with the temporal and spatial dynamics of the shifting landscape mosaic. Alternation of landscape use by terrestrial and aquatic fauna corresponds to the rise and fall of the flood. Complex ecological processes inherent to intact riverine landscapes are reflected in their biodiversity, with important implications for the restoration and management of river corridors.  相似文献   

15.
One goal of conservation biology is the assessment of effects of land use change on species distribution. One approach for identifying the factors, which determine habitat suitability for a species are statistical habitat distribution models. These models are quantitative and can be used for predictions in management scenarios. However, they often have one major shortcoming, which is their complexity. This means that they need several, often costly-to-determine parameters for predictions of species occurrence. We first used habitat suitability models to investigate and determine habitat preferences of three different Orthoptera species. Second, we compared the predictive powers of simple habitat suitability models considering only the ‘habitat type’ as predictor with more complex models taking different habitat factors into account. We found that the habitat type is the most reliable and robust factor, which determines the occurrence of the species studied. Thus, analyses of habitat suitability can easily be carried out on the basis of existing vegetation maps for the conservation of the three species under study. Our results can serve as a basis for the estimation of spatio-temporal distribution and survival probabilities of the species studied and might also be valuable for other species living in dry grasslands.  相似文献   

16.
Through environmentally induced maternal effects females may fine-tune their offspring’s phenotype to the conditions offspring will encounter after birth. If juvenile and adult ecologies differ, the conditions mothers experienced as juveniles may better predict their offspring’s environment than the adult females’ conditions. Maternal effects induced by the environment experienced by females during their early ontogeny should evolve when three ecological conditions are met: (1) Adult ecology does not predict the postnatal environmental conditions of offspring; (2) Environmental conditions for juveniles are correlated across successive generations; and (3) Juveniles occasionally settle in conditions that differ from the juvenile habitat of their mothers. By combining size-structured population counts, ecological surveys and a genetic analysis of population structure we provide evidence that all three conditions hold for Simochromis pleurospilus, a cichlid fish in which mothers adjust offspring quality to their own juvenile ecology. In particular we show (1) that the spatial niches and the habitat quality differ between juveniles and adults, and we provide genetic evidence (2) that usually fish of successive generations grow up in similar habitats, and (3) that occasional dispersal in populations with a different habitat quality is likely to occur. As adults of many species cannot predict their offspring’s environment from ambient cues, life-stage specific maternal effects are likely to be common in animals. It will therefore be necessary to incorporate parental ontogeny in the study of parental effects when juveniles and adults inhabit different environments.  相似文献   

17.
Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed ‘beta diversity’) is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.  相似文献   

18.
Mountains occupy 24% of the global land surface area and are home to 12% of the world’s population. They have ecological, aesthetic, and socioeconomic significance, not only for people living in mountain areas, but for those living beyond. Mountains need specific attention for their contribution to global goods and services, especially by developing and implementing mountain specific policies. Conservation policies have evolved from the protection of charismatic species, to habitat and ecosystem/landscape conservation, and, finally, to people-oriented conservation approaches. This paper, with particular reference to paradigm shifts in the Hindu Kush-Himalayan (HKH) region, discusses the evolution of conservation policies, developments in conservation practices, the status of protected area management, wetland conservation initiatives and the landscape approach, community-based conservation initiatives, and the convergence of policies and practices. In the HKH region, conservation efforts now adopt participatory approaches, implement policies of decentralised governance for biodiversity management, and empower local communities in biodiversity management. The paradigm shift in the policies and practices related to conservation has been gradual and has included the acceptance of communities as an integral part of national level conservation initiatives, together with the integration of many global conventions. There are many successful pilots in the HKH region that deserve upscaling by the countries from the region. Realising the importance of mountains as hotspots of biodiversity, and due to their role as providers of global goods and services, the Convention on Biological Diversity adopted the Programme of Work on Mountain Biodiversity. Such a decision specific to mountains provides enormous opportunities for both conservation and development. Recent challenges posed by climate change need to be integrated into overall biodiversity conservation and management agendas, especially in mountain areas. The HKH region has been identified as a blank spot for data by the Inter-Governmental Panel on Climate Change, indicating the need to develop regional database and sharing mechanisms. This is a tall task, but one that holds enormous opportunity for the HKH countries and institutions with regional mandates to address the emerging challenges of climate change on biodiversity conservation by reducing scientific uncertainty.  相似文献   

19.
Understanding the historical biogeography of this global biodiversity hotspot is as important to long-term conservation goals as ecology and evolution are to understanding current patterns and processes. Today’s geography is, however, misleading and typical of only ~2% of the last million years; >90% of that time the region’s land area was 1.5–2.0 times larger as mean sea levels were 62 m below today’s, climates were cooler, and extensive forests and savanna covered the emerged Sunda plains. The region’s land area varied two-fold as sea levels fluctuated up to ±50 m with each of ~50 Pleistocene glacial cycles, and forests expanded and contracted with oscillations in land area and seasonality. This dynamic geographic history is relevant to the development of biogeographic regionalism and shows that it is today’s forests that are refugial, not those of the Last Glacial Maximum. This history affects how species will adapt or shift their ranges in response to global warming and further decreases in land area (submergence of low-lying coastal areas) during the 21st century. The alternative is mass species extinction. The biota is also threatened by the continued destruction of forest, destruction of Mekong River flood-pulse based ecosystems, and continued human population growth. Human biogeography will become more important in conservation planning as tens of millions of people who depend on protected area forests, riverine ecosystems, and coastal habitats become environmental refugees. Conservation scientists need to become more involved in regional ecological education, environmental stewardship, and ecosystem-based adaptation to sustain as much as possible of this rich biota and the ecological services it provides.  相似文献   

20.
Conflicts between the conservation of biodiversity and other human activities occur in all habitats and can impact severely upon socio-economic and biological parameters. In a changing environment, with increasing pressure on ecosystem goods and services and increasing urgency for biodiversity conservation, these conflicts are likely to increase in importance and magnitude and negatively affect biodiversity and human well-being. It is essential, however, to better understand what is meant by ‘biodiversity conflicts’ in order to develop ways to manage these effectively. In view of the complexity of the social and ecological contexts of conflicts, this paper explores ‘biodiversity impacts’ linked to agricultural, forestry and other sectoral activities in the UK. The paper then describes the transition from ‘biodiversity impacts’ to ‘biodiversity conflicts’, illustrating this concept with specific examples. While generalisations relating to conflict management are made difficult by their unique contextual settings, this paper suggests approaches for their management, based on the experiences of scientists who have been involved in managing conflicts. We consider the role of science and scientists; trust and dialogue; and temporal and spatial scales in biodiversity conflicts and highlight the combined role they play in successful biodiversity conflict management. Recommendations are also made for future research on biodiversity conflicts in a changing environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号